July 2018
Volume 59, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2018
High Resolution Imaging Mass Spectrometry of Human Donor Eyes with and without Age-Related Macular Degeneration (AMD)
Author Affiliations & Notes
  • David Anderson
    Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
  • Jerry Messinger
    Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States
  • Nathan H Patterson
    Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
  • Jeffrey M Spraggins
    Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
  • Christine A. Curcio
    Department of Ophthalmology, University of Alabama, Birmingham, Alabama, United States
  • Kevin L Schey
    Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
  • Footnotes
    Commercial Relationships   David Anderson, None; Jerry Messinger, None; Nathan Patterson, None; Jeffrey Spraggins, None; Christine Curcio, Heidelberg Engineering, Hoffman LaRoche (F); Kevin Schey, None
  • Footnotes
    Support  NIH GM103391, NIH EY027948, NIH R01EY015520, NIH R01EY27948, NIH EY027948, Macula Foundation, International Retinal Research Foundation, EyeSight Foundation of Alabama, Research to Prevent Blindness.
Investigative Ophthalmology & Visual Science July 2018, Vol.59, 3211. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      David Anderson, Jerry Messinger, Nathan H Patterson, Jeffrey M Spraggins, Christine A. Curcio, Kevin L Schey; High Resolution Imaging Mass Spectrometry of Human Donor Eyes with and without Age-Related Macular Degeneration (AMD). Invest. Ophthalmol. Vis. Sci. 2018;59(9):3211.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Purpose: The purpose of this study is to develop high spatial resolution and high mass resolution imaging mass spectrometry (IMS) methods for imaging molecular changes in chorioretinal tissue from donors with AMD and with normal aged maculas. We sought to compare signal intensities for small molecules, including lipids, and image quality from specimens that are fixed or fresh-frozen.

Methods : Methods: From each of 2 pairs of donor eyes (<6 hr after death), the left eye was frozen without prior fixation, and the right eye was preserved in 4% paraformaldehyde. Macula and periphery of both eyes in each pair were cryo-sectioned together at 12 µm thickness and placed on a MALDI target slide. Adjacent sections were stained with Periodic acid-Schiff and Hematoxylin for morphological analysis. IMS was performed at 15 µm spatial resolution in both positive and negative ion modes on a Bruker solarix 9.4T FTICR instrument with a modified MALDI source designed for high spatial resolution imaging experiments. Tissue autofluorescence and reflectance images were also acquired from sections subject to IMS, before and after IMS experiments, to enable high precision registration of IMS and optical signals, allowing high-confidence localization of IMS signals to even single cell layer histological features. Low abundance signals were enhanced in FTICR imaging experiments using continuous accumulation of selected ions (CASI) of defined mass regions. IMS data were analyzed using SCiLS lab and FIJI ImageJ software.

Results : Results: Specific lipid signals observed in IMS images correlate with tissue morphological features, i.e. different retina cell layers, retinal pigment epithelium (RPE), and choroid, as well as features of AMD pathology. Specifically, high spatial resolution IMS combined with registration to autofluorescent signals enabled detection of distinct lipid signals in RPE and thick basal laminar deposits. High mass accuracy measurements allowed tentative identifications to be made including for PE-ceramides and glucosylceramides. RPE molecular markers previously identified as bis(monoacylglycero)phosphate lipids (BMPs), were also detected.

Conclusions : Conclusion: High spatial resolution IMS technology provides spatially-resolved molecular analysis of AMD-related pathological features in human donor eyes. Fixation preserves morphology, but not all lipid signals detectable by IMS.

This is an abstract that was submitted for the 2018 ARVO Annual Meeting, held in Honolulu, Hawaii, April 29 - May 3, 2018.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×