Investigative Ophthalmology & Visual Science Cover Image for Volume 59, Issue 9
July 2018
Volume 59, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2018
Inhibition of ocular fibrosis with a miR-29b mimic
Author Affiliations & Notes
  • Corrie L Gallant-Behm
    R&D, miRagen Therapeutics, Inc., Boulder, Colorado, United States
  • Stephanie Propp
    R&D, miRagen Therapeutics, Inc., Boulder, Colorado, United States
  • Aimee Jackson
    R&D, miRagen Therapeutics, Inc., Boulder, Colorado, United States
  • Footnotes
    Commercial Relationships   Corrie Gallant-Behm, miRagen Therapeutics, Inc. (E), miRagen Therapeutics, Inc. (P); Stephanie Propp, miRagen Therapeutics, Inc. (E), miRagen Therapeutics, Inc. (P); Aimee Jackson, miRagen Therapeutics, Inc. (E), miRagen Therapeutics, Inc. (P)
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science July 2018, Vol.59, 5316. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Corrie L Gallant-Behm, Stephanie Propp, Aimee Jackson; Inhibition of ocular fibrosis with a miR-29b mimic. Invest. Ophthalmol. Vis. Sci. 2018;59(9):5316.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Corneal and retinal fibrosis lead to vision loss following ocular injury (e.g., corneal damage and retinal detachment) or as a result of progressive disease (e.g., FECD and diabetic retinopathy). Few to no therapies are currently available to prevent or treat ocular fibrosis and this is therefore an area of high unmet medical need. miR-29b is a potent anti-fibrotic microRNA that inhibits the expression of collagens and other extracellular matrix molecules. miR-29 is expressed at abnormally low levels in numerous fibrotic conditions, and addition of exogenous miR-29 has been shown to prevent fibrosis in the lung, skin and other organs. This study investigated the anti-fibrotic effects of a miR-29b mimic in the eye.

Methods : An oligonucleotide mimic of miR-29b, MRG-201, was administered topically to the rat cornea in the context of an alkali burn, via intravitreal injection in naïve rats and in a rabbit model of proliferative vitreoretinopathy (PVR), or via active transfection into human retinal pigment epithelial (RPE) cells. Uptake/distribution of a FITC labeled oligo was assessed by confocal microscopy. Pharmacokinetics was assessed by quantitative RT-PCR (qRT-PCR) from whole tissue homogenates over time. Pharmacodynamic activity was assessed by measuring repression of miR-29 target gene expression in cells or tissue using qRT-PCR.

Results : FITC-MRG-201 was readily taken up into the cornea in the context of an alkali burn and into all layers of the retina including the RPE layer after intravitreal injection. PK analysis indicates that dosing into the closed compartment of the eye leads to relatively long tissue exposure in the retina. In vitro, MRG-201 inhibited expression of multiple collagens in both primary RPE cells and iPS-derived RPE cells in the presence and absence of TGF-b1 stimulation. In vivo, MRG-201 inhibited expression of multiple miR-29 target genes (e.g. COL1A1, COL1A2) in a rabbit model of PVR.

Conclusions : MRG-201 represents a potential new therapeutic for prevention of both corneal and retinal fibrosis. MRG-201 is taken up into the relevant cell types in both tissues, and reduces expression of multiple collagens and other miR-29 target genes in vitro and in vivo. These findings suggest that MRG-201 or other miR-29 mimics may function as effective therapeutics to inhibit either corneal or retinal fibrosis. Additional PK/PD/efficacy studies in vivo are currently underway.

This is an abstract that was submitted for the 2018 ARVO Annual Meeting, held in Honolulu, Hawaii, April 29 - May 3, 2018.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×