July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
Phase perception altered by long-term neural adaptation to habitual optics reduces neural binocular summation
Author Affiliations & Notes
  • Geunyoung Yoon
    Flaum Eye Institute, University of Rochester, Rochester, New York, United States
    Center for Visual SCience, University of Rochester, Rochester, New York, United States
  • Cherlyn Joan Ng
    Flaum Eye Institute, University of Rochester, Rochester, New York, United States
    Center for Visual SCience, University of Rochester, Rochester, New York, United States
  • Duje Tadin
    Center for Visual SCience, University of Rochester, Rochester, New York, United States
    Flaum Eye Institute, University of Rochester, Rochester, New York, United States
  • Randolph Blake
    Department of Psychology, Vanderbilt University, Tennessee, United States
  • Martin S Banks
    School of Optometry, UC Berkeley, California, United States
  • Footnotes
    Commercial Relationships   Geunyoung Yoon, None; Cherlyn Ng, None; Duje Tadin, None; Randolph Blake, None; Martin S Banks, None
  • Footnotes
    Support  NIH Grant EY014999
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 606. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Geunyoung Yoon, Cherlyn Joan Ng, Duje Tadin, Randolph Blake, Martin S Banks; Phase perception altered by long-term neural adaptation to habitual optics reduces neural binocular summation. Invest. Ophthalmol. Vis. Sci. 2019;60(9):606.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Prolonged exposure to ocular aberrations can alter perceived contrast and phase. We investigated adaptation to dissimilar optical aberrations between the two eyes to learn how adaptation affects binocular contrast summation.

Methods : Two keratoconus and three normal subjects participated in our study. A binocular adaptive optics vision simulator was used to fully correct subjects’ optical aberrations and to conduct psychophysical tests. Subjects’ monocular phase perception was quantified by presenting suprathreshold horizontal compound gratings consisting of a fundamental frequency (2 cpd) and second harmonic (4 cpd) in which relative phase shifts were manipulated. Contrast thresholds were measured monocularly and binocularly. Neural (i.e., aberration-free) binocular summation was then expressed as the ratio of the average monocular-to-binocular thresholds. The difference in monocular phase perception between the two eyes was then correlated with the binocular summation.

Results : The keratoconus subjects had significantly different (p=0.02) perceived monocular phase angle deviations (+4.15 ± 7.20 deg) compared to the normal optics subjects (-8.25 ± 3.40 deg). Both monocular and binocular contrast thresholds were higher in keratoconus subjects compared to normal subjects with a monocular mean of 0.0238 and 0.0187, respectively (p=0.07), and a binocular mean of 0.0148 and 0.0098, respectively (p=0.08). For both subject groups, binocular summation index values ranged from 1.4 to 2, while the perceived monocular difference in phase angles ranged from 1.7 to 11.8 deg. A negative correlation was found between the perceived difference in phases between the eyes and binocular benefit at both spatial frequencies (R2 = 0.55 (2 cpd) and R2=0.52 (4 cpd)).

Conclusions : Long-term neural adaptation to habitual ocular aberrations alters phase perception. Differences in monocularly perceived phases in the two eyes reduced binocular contrast summation when the optical aberrations were fully corrected. These findings indicate that neural adaptation to dissimilar optics between the eyes compensates for optically induced phase deviations. However, this compensation does not contribute to summation when those aberrations are corrected.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×