July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
Modeling lysosomal dysfunction in the retinal pigmented epithelium to study pathogenesis of age-related macular degeneration
Author Affiliations & Notes
  • Miguel Seabra
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
    UCL Institute of Ophthalmology, London, United Kingdom
  • M. Helena Cardoso
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
  • Michael Hall
    UCL Institute of Ophthalmology, London, United Kingdom
  • A. Sofia Falcão
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
  • Cristina Escrevente
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
  • Pedro Antas
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
  • Gabriela V. Santos
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
  • Sandra Tenreiro
    CEDOC, Nova University of Lisbon, Lisbon, Portugal
  • Clare E. Futter
    UCL Institute of Ophthalmology, London, United Kingdom
  • Footnotes
    Commercial Relationships   Miguel Seabra, None; M. Helena Cardoso, None; Michael Hall, None; A. Sofia Falcão, None; Cristina Escrevente, None; Pedro Antas, None; Gabriela Santos, None; Sandra Tenreiro, None; Clare Futter, None
  • Footnotes
    Support  FCT Portugal PTDC/MED-PAT/30385/2017
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 1246. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Miguel Seabra, M. Helena Cardoso, Michael Hall, A. Sofia Falcão, Cristina Escrevente, Pedro Antas, Gabriela V. Santos, Sandra Tenreiro, Clare E. Futter; Modeling lysosomal dysfunction in the retinal pigmented epithelium to study pathogenesis of age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2019;60(9):1246.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Age-related Macular Degeneration (AMD) is the leading cause of vision impairment in developed countries. In AMD, photoreceptor degeneration appears to occur as a consequence of Retinal Pigment Epithelium (RPE) dysfunction. A crucial function of RPE is the ability to degrade protein- and lipid- content which result from daily processing of Photoreceptor Outer Segments (POS). Degradation and recycling of cellular components are the main responsibilities attributed to lysosomes and, remarkably, many age-related diseases stem from improper lysosomal health. The present work focuses on the development and characterization of a human RPE in vitro model, derived from pluripotent stem cells, with the ultimate goal of studying early events in age-related RPE disease. This model was used to explore the importance of lysosomes in intracellular cargo processing and the role of lysosomal dysfunction in AMD.

Methods : A drug-based model featuring chloroquine-induced hESc-RPE lysosomal dysfunction was established and characterized. Cells were subjected to extended chloroquine treatments in acute (1d), continued (3d) and chronic (7d) protocols. At the different times, several read-outs related to lysosomal function were developed using flow cytometry, light and electron microscopy (EM) methods, and immunoblot.

Results : Chloroquine treatment of RPE cells leads to an impairment of the degradative ability, as assessed by the presence of reminiscent POS which accumulate over time. Deficiency of cargo processing was further demonstrated, through the decline of DQ-BSA proteolytic breakdown. Autophagy markers were also found to increase over the course of treatment, indicating impaired flux. Morphological changes observed by EM shared characteristics described in AMD. These changes occurred despite nuclear translocation of the lysosomal transcription factor, TFEB and the upregulation of expression and activity of cathepsins.

Conclusions : Chloroquine-treatment of hESc-RPE induced lysosomal dysfunction and thus recapitulates some characteristics of AMD in vitro. Identification and characterization of defective pathways responsible for dysfunctional lysosomal activity will contribute to a better understanding of AMD pathogenesis and identification of new therapeutic targets.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×