July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
The Eye-tem Bank – comprehensive measurement of ophthalmic quality of life
Author Affiliations & Notes
  • Konrad Pesudovs
    NHMRC Centre of Clinical Eye Research, Pesudovs, Adelaide, South Australia, Australia
  • Jyoti Khadka
    University of South Australia, Adelaide, South Australia, Australia
  • Mallika Prem Senthil
    Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
  • Himal Kandel
    Ophthalmology, Save Sight Institute, Sydney, New South Wales, Australia
  • Sheela Evangeline Kumaran
    Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
  • Eva K Fenwick
    Ophthalmology, Singapore Eye Research Institute, Singapore, Singapore
  • Tasanee Braithwaite
    Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
  • Ecosse Luc Lamoureux
    Ophthalmology, Singapore Eye Research Institute, Singapore, Singapore
  • Footnotes
    Commercial Relationships   Konrad Pesudovs, None; Jyoti Khadka, None; Mallika Prem Senthil, None; Himal Kandel, None; Sheela Evangeline Kumaran, None; Eva Fenwick, None; Tasanee Braithwaite, None; Ecosse Lamoureux, None
  • Footnotes
    Support  NHMRC Grant (1031838)
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 1764. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Konrad Pesudovs, Jyoti Khadka, Mallika Prem Senthil, Himal Kandel, Sheela Evangeline Kumaran, Eva K Fenwick, Tasanee Braithwaite, Ecosse Luc Lamoureux; The Eye-tem Bank – comprehensive measurement of ophthalmic quality of life. Invest. Ophthalmol. Vis. Sci. 2019;60(9):1764.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose :
To report on progress of a major international project to develop and validate item banks for the comprehensive measurement of quality of life (QOL) all eye diseases (the Eye-tem Bank).

Methods : 14 disease-specific item banks are at various stages of development. We employ a systematic 4-phase method for the development of each disease-specific module: Phase I: Content identification (items from existing instruments, disease-specific patient focus groups and machine learning methods of patient data); Phase II: Pilot testing the initial item sets for item calibration using Rasch analysis; Phase III: Validation of the item banks as applied by computer adaptive testing (CAT); and Phase IV: Evaluating ophthalmic QOL.

Results : Phase I (Australia, n=780, median age, 56.5 yrs; Nepal, n=101, median age, 29 yrs ; India, n=30, median age, 23.5 yrs) has identified 3226 unique items for 7 modules across 8 to 13 ophthalmic QoL domains (activity limitation, driving, mobility, lighting, visual symptoms, ocular comfort symptoms, general symptoms, convenience, concerns, social, emotional, economic and coping). Overall 30-50% of items are common between modules and 60-79% between countries. Phase II (total n=1910) has been completed for glaucoma (n=293), diabetic retinopathy (DR, n=514) and hereditary retinal disease (HRD, n=233) in Australia; and refractive error (n=305) in Nepal. Phase II is ongoing for age-related macular degeneration (n=100), acquired retinal diseases (n=20), refractive error (Australia, n=165) and amblyopia & strabismus (India, n=304, Australia, n=55). Items of 4 modules (glaucoma, HRD, DR and refractive error (Nepal)) have been calibrated using Rasch analysis. Phase III data collection for DR module has been completed in Singapore (n=183). Four new domains of QoL (driving, lighting, coping and treatment-related convenience) have emerged. Items are being extracted and refined using qualitative methods to develop cornea (n=41), retinal detachment (n=39), uveitis spectrum of diseases (n=41), and inflammation (n=39)-specific pilot item banks. A machine learning approach to patient data is being tested in uveitis.

Conclusions : Comprehensive item banks, with up to 13 QoL domains for have been created for groups of diseases. Disease-specificity appears important with only one-third of items common across disease modules. Internationalisation appears viable with more than two-thirds of items common across countries.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×