Investigative Ophthalmology & Visual Science Cover Image for Volume 60, Issue 9
July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
TRPV1-dependent activation of NKCC1 in mouse lens epithelium
Author Affiliations & Notes
  • Mohammad Shahidullah
    Physiology, Univ of Arizona, College of Medicine, Tucson, Arizona, United States
  • Amritlal Mandal
    Physiology, Univ of Arizona, College of Medicine, Tucson, Arizona, United States
  • David Krizaj
    Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah, United States
  • Sarah Redmon
    Ophthalmology, University of Utah School of Medicine, Salt Lake City, Utah, United States
  • Nicholas A Delamere
    Physiology, Univ of Arizona, College of Medicine, Tucson, Arizona, United States
  • Footnotes
    Commercial Relationships   Mohammad Shahidullah, None; Amritlal Mandal, None; David Krizaj, None; Sarah Redmon, None; Nicholas Delamere, None
  • Footnotes
    Support  NIH EY009532
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 3177. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Mohammad Shahidullah, Amritlal Mandal, David Krizaj, Sarah Redmon, Nicholas A Delamere; TRPV1-dependent activation of NKCC1 in mouse lens epithelium. Invest. Ophthalmol. Vis. Sci. 2019;60(9):3177.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : In porcine lenses the response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter NKCC1. Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of TRPV1 ion channels. Here we examine responses in the mouse, using a knockout strategy to examine lenses from mice that do not express TRPV1.

Methods : Lenses were obtained from TRPV1 KO and WT C57/BL6 mice. Studies were carried out in primary cultured lens epithelium obtained from WT and TRPV1 KO mouse. TRPV1 and NKCC1 expression and phosphorylation was studied by RT-PCR and western blot analysis. Rb uptake was measured by atomic absorption spectrometry.

Results : RT-PCR confirmed TRPV1 expression in the WT but not in the KO mouse lens. Capsaicin (1 µM) and moderate hyperosmotic solution (350 mOsm) elicited rapid (2 min) phosphorylation of NKCC1 in epithelial cells derived from WT but not in cells derived from TRPV1 KO mice. In the wild type cells, phosphorylated NKCC1 band density was increased from a normalized value of 1 to a value of 1.5±0.05 (P<0.001, n=3, capsaicin) and 2.0±0.1 (P<0.001, n=3, hyperosmotic solution). Rb uptake was measured as an index of NKCC1 stimulation. Capsaicin as well as hyperosmotic solution caused significant increase in Rb uptake in WT cells but not in TRPV1 KO cells. The increase in Rb uptake was from 333±3 (control) to 401±6 (P<0.001), n=6, capsaicin) and from 309±6 (control) to 379±5 (P<0.001, n=6, hyperosmotic) nmoles/mg protein/10 min. The capsaicin and hyperosmotic solution-induced increases in Rb uptake were abolished by the NKCC inhibitor, bumetanide (10 nM). Furthermore, hyperosmotic solution-induced NKCC1 phosphorylation and Rb uptake increases both were abolished by a TRPV1 antagonist A889415 (1.0µM).

Conclusions : A variety of responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb uptake responses in TRPV1 KO mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×