July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
Dopamine in Flickering Illumination and Monochromatic Light
Author Affiliations & Notes
  • Tian Tian
    Eye & ENT Hospital of Fudan University, Shanghai, China
  • Rui Liu
    Eye & ENT Hospital of Fudan University, Shanghai, China
  • Footnotes
    Commercial Relationships   Tian Tian, None; Rui Liu, None
  • Footnotes
    Support  Shanghai Pujiang Program(16PJ1401800)
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 5881. doi:https://doi.org/
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Tian Tian, Rui Liu; Dopamine in Flickering Illumination and Monochromatic Light. Invest. Ophthalmol. Vis. Sci. 2019;60(9):5881. doi: https://doi.org/.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Monochromatic lights coexist with high or low temporal flicker provide different defocus signals to control eye growth. We want to know how the dopamine system changes during this process and whether it is related to refraction changes.

Methods : Guinea pigs were randomly divided into eleven groups. Sixty animals were raised in White-steady, White-0.5Hz, White-20Hz groups. Eighty animals were raised in White-steady, Green-steady, Green-0.5Hz and Green-20Hz groups. Eighty animals were raised in White-steady, Blue-steady, Blue-0.5Hz and Blue-20Hz groups. Refraction were measured by streak retinoscopy at week 8. Changes in retinal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in vitreous were determined by high pressure liquid chromatography with electrochemical detection (HPLC-ECD).

Results : Refraction in Green-0.5Hz showed myopia and Blue-0.5Hz showed hyperopia, which were very similar to Green-steady and Blue-steady. Blue-20Hz showed less hyperopia compared with Blue-steady and more hyperopia in Green-20Hz than Green-steady. DOPAC significantly decreased in White-20Hz compared with White-steady. Both DA and DOPAC decreased in Green-steady compared with White-steady. DA and DOPAC increased in Green-0.5Hz compared to Green-steady. No significant difference was found between Green-steady and Green-20Hz. DA increased in Blue-steady compared with White-steady. DA decreased in Blue-20Hz compared to Blue-steady. However, DOPAC were not higher in Blue-steady compared with White-steady. DOPAC decreased in Blue-20Hz compared to Blue-steady as well.

Conclusions : Monochromatic light affect the synthesis and secretion of dopamine. Flickering light at different frequencies stimulate dopamine differently compared with steady light. Changes in dopamine may not be responsible for changes of refraction in monochromatic lights coexist with high or low temporal frequency.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×