July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
Investigation of the origin of the specular fundus reflex
Author Affiliations & Notes
  • Mohamed Belmouhand
    Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
  • Simon Rothenbuehler
    Eye Clinic, Basel University Clinic, Basel, Switzerland
  • Michael Larsen
    Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
    Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
  • Footnotes
    Commercial Relationships   Mohamed Belmouhand, None; Simon Rothenbuehler, None; Michael Larsen, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 6122. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Mohamed Belmouhand, Simon Rothenbuehler, Michael Larsen; Investigation of the origin of the specular fundus reflex. Invest. Ophthalmol. Vis. Sci. 2019;60(9):6122.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Purpose : To investigate to origin of the specular fundus reflex seen on conventional fundus photographs in healthy children and young adults.

Methods : Comparison of conventional color fundus photographs and en-face swept-source optical coherence tomography scans (OCT; Topcon Triton, Topcon, Tokyo, Japan) of the vitreoretinal interface region in 7 healthy subjects aged 7-60 years.

Results : The distribution of specular reflexes over the fundus varied between fundus photographs and en-face OCT scans captured in a combined fundus imaging procedure. The specular reflex varied from procedure to procedure in the same seating. In a stack of en-face images averaged over a thickness of 2.6 µm and fitting the contour of the inner surface of the retina and presented in steps of 2.6 µm, the specular reflex reached its maximum intensity at a nominal depth of 7.8 µm and spread to a depth 26 µm or more. The B-scans showed the specular reflex at the inner surface of the retina, corresponding to the internal limiting membrane (ILM). In subjects where the posterior hyaloid was separated from the ILM, if only by a small distance, there was no evidence that the posterior hyaloid contributed to the specular fundus reflex. The results were consistent in all 7 subjects.

Conclusions : Our observations indicate that the source of the specular fundus reflex is the ILM, not the posterior hyaloid membrane of the vitreous. The term posterior hyaloid reflex should therefore be avoided. We found no evidence to suggest that the specular fundus reflex is fundamentally different between conventional fundus photography and en-face OCT. The apparent peak of the specular fundus reflex being found at a nominal distance of 7.8 µm inside the retina may result from the segmentation algorithm having set the retinal surface where it detected only by the tip of the OCT sampling volume, the Z-axis length of which is determined by the coherence length of the OCT system. The results are relevant for the interpretation of abnormalities of the specular fundus reflex and for the development of methods that can limit its interference with the imaging of deeper retinal structures, such as retinal vessels, especially in children.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.