July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
Functional divergence at the mouse type 6 bipolar cell terminal
Author Affiliations & Notes
  • David I Swygart
    Opthamology, Northwestern University, Chicago, Illinois, United States
  • Greg Schwartz
    Opthamology, Northwestern University, Chicago, Illinois, United States
  • Rachel O Wong
    Biological Structure, University of Washington, Seattle, Washington, United States
  • Wan-Qing Yu
    Biological Structure, University of Washington, Seattle, Washington, United States
  • Footnotes
    Commercial Relationships   David Swygart, None; Greg Schwartz, None; Rachel Wong, None; Wan-Qing Yu, None
  • Footnotes
    Support  NIH Grant DEY026770A
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 552. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      David I Swygart, Greg Schwartz, Rachel O Wong, Wan-Qing Yu; Functional divergence at the mouse type 6 bipolar cell terminal. Invest. Ophthalmol. Vis. Sci. 2019;60(9):552.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : While neurons were long thought to represent the fundamental computational units of the nervous system, a large body of work over the last 50 years has revealed subcellular functional compartmentalization. We hypothesize that such subcellular compartmentalization in retinal bipolar cells allow individual bipolar cells to transmit different functional signals through different synapses. To test this hypothesis, we examined the output of the type 6 bipolar cell onto two potential downstream retinal ganglion cell types (PixON and On Alpha RGC types).

Methods : Light sensitive retinas were extracted from adult mice and whole mounted. Light responses of retinal ganglion cells (RGCs) were recorded under cell attached and whole cell configurations. After physiological recording, the retinas were imaged with two-photon microscopy, underwent immunohistochemical labeling and confocal microscopy, or were sectioned and underwent serial electron microscopy.

Results : Immunohistochemical staining shows that the majority of excitatory input synapses to the On Alpha and PixON RGCs are made by the type 6 bipolar cell. Serial electron microscopy shows that the same type 6 bipolar cell makes synapses onto both the On Alpha and PixON RGC. Additionally, these two RGC types have high cross-correlation of excitatory input, indicating that they both receive excitatory input from the same neuron. Although receiving excitatory input from the same bipolar cell type, excitatory input to the On Alpha RGC has weak surround suppression while excitatory input to the PixON RGC has strong surround suppression. This difference in surround suppression was reduced by application of GABA receptor antagonists or voltage-gated sodium channel blockers.

Conclusions : We show that an individual type 6 bipolar cell is able to provide input with strong surround suppression to the one type of RGC (PixON RGC) while simultaneously providing input with weak surround suppression to a different type of RGC (On Alpha RGC). This subcellular signal divergence occurs at the terminal of the type 6 bipolar cell via GABAergic presynaptic inhibition from wide-field spiking amacrine cells. These findings indicate that each terminal of a single bipolar cell could potentially carry a unique visual signal. This expands the number of visual channels in the inner retina allowing for increased parallelism at the earliest stages of visual processing.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

 

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×