July 2019
Volume 60, Issue 9
Open Access
ARVO Annual Meeting Abstract  |   July 2019
A nonlinear viscoelastic model of corneal and whole-eye motion of prostaglandin-analog treated subjects under loading by dynamic Scheimpflug analyzer
Author Affiliations & Notes
  • B. Audrey Nguyen
    Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
  • Matthew Aaron Reilly
    Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
    Ophthalmology & Visual Sciences, The Ohio State University, Columbus, Ohio, United States
  • Cynthia J Roberts
    Ophthalmology & Visual Sciences, The Ohio State University, Columbus, Ohio, United States
    Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
  • Footnotes
    Commercial Relationships   B. Audrey Nguyen, None; Matthew Reilly, None; Cynthia Roberts, Carl Zeiss Meditec (R), Oculus Optikgerate GmbH (C), Optimeyes (C), STAARSurgical (R), Ziemer Ophthalmic Systems AG (C)
  • Footnotes
    Support  NIH/NEI R01 EYE027399
Investigative Ophthalmology & Visual Science July 2019, Vol.60, 6833. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      B. Audrey Nguyen, Matthew Aaron Reilly, Cynthia J Roberts; A nonlinear viscoelastic model of corneal and whole-eye motion of prostaglandin-analog treated subjects under loading by dynamic Scheimpflug analyzer. Invest. Ophthalmol. Vis. Sci. 2019;60(9):6833.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : An analytical model of corneal and whole-eye motion of the human eye under air-puff loading by a dynamic Scheimpflug analyzer was developed. The ocular components of the eye – the cornea and sclera – had been previously validated by a series of ex vivo human eye studies. In order to validate the extraocular components of the model and its ability to capture essential features of in vivo response to an air-puff, the effect of prostaglandin-analog (PGA) treatment for glaucomatous human subjects was analyzed using the model. PGA-treated subjects were selected because PGAs are known to increase uveoscleral outflow by affecting the sclera and generate atrophy of the orbital fat surrounding the globe.

Methods : This analytical model is a system of inertial masses representing the cornea and eye, and considers the extraocular tissues (fat and extraocular muscles) as a Kelvin-Voigt viscoelastic element, the cornea as three-parameter viscoelastic solid, and the sclera as a nonlinear stiffening spring. The values of spring and dashpot constants were estimated using an iterative approach to minimze the error between the simulation result and the in vivo data of corneal and whole-eye motion (WEM). From a separate study, 6 human subjects were selected as having at least a 10 mmHg drop in their intraocular pressure (IOP) as measured by Goldmann applanation tonometry (GAT).

Results : The human subjects showed an unexpected significant decrease in WEM. The one-dimensional analytical model showed a significant increase (p<0.05) in the extraocular spring parameter after PGA treatment, as well as a significant decrease in scleral stiffness parameter. The two corneal spring terms remained unchanged (mean of -3.6%, 2.3% change respectively). While the corneal viscous term significantly increased, this has been shown to be strongly correlated with IOP changes.

Conclusions : The simulation results strongly suggest that the decrease in WEM in PGA-treated subjects is due to the coupling of reduced scleral stiffness and IOP. The reduced scleral stiffness results in the air-puff force being redirected into corneal deflection and scleral expansion, instead of into the rearward displacement of the globe in the presence of orbital fat atrophy.

This abstract was presented at the 2019 ARVO Annual Meeting, held in Vancouver, Canada, April 28 - May 2, 2019.

 

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×