Abstract
Purpose :
In vivo visualization of cellular-level retinal structure with adaptive optics optical coherence tomography enables studies of retinal changes in mouse models of diseases causing blindness. We present our work on visible-light sensorless adaptive optics (VIS-SAO) OCT for structural and fluorescence imaging in the small eyes of mice. The response of the retina to laser exposures is studied in mice with the VIS-SAO OCT.
Methods :
The VIS-SAO OCT system shown in Fig 1 was constructed based on our previous reports using a supercontinuum laser and tunable filter. Red light with a central wavelength of 635 nm and a bandwidth of 35 nm was delivered at 100 µW into the mouse eye. The system also provided GFP excitation for fluorescence imaging. The system used two deformable elements including a Variable Focus Lens (VFL), and segmented Deformable Mirror (DM). The Adaptive Optics was performed using image-based optimization algorithm, driven by the en face VIS-SAO OCT images. A dichroic mirror was used to co-align a retinal exposure laser with the OCT light, such that higher power light could be focused onto the retina while simultaneously recording images.
Results :
VIS-SAO OCT images were acquired in pigmented mice. Representative images of mouse retina are shown in Fig 2 demonstrating the high-resolution imaging capability of our system. The B-scan in Fig 2a demonstrates VIS-SAO OCT imaging with the red light. The image in Fig 2b shows the ability to visualize the GFP emission and the effect of SAO optimization from the same system. We have done experiments to investigate retinal response with VIS-SAO OCT during and after laser exposure. The retinal response to different exposures will be presented.
Conclusions :
We present a VIS-SAO OCT system for small animal retinal imaging, which enables wavefront sensorless aberrations correction for user-selected layers. In vivo retinal imaging of pigmented mice is presented, and the image quality improvement resulting from AO correction is demonstrated.
This abstract was presented at the 2019 ARVO Imaging in the Eye Conference, held in Vancouver, Canada, April 26-27, 2019.