August 2019
Volume 60, Issue 11
Open Access
ARVO Imaging in the Eye Conference Abstract  |   August 2019
Fully automatic localisation of the optic disc using YOLO in colour fundus photographs
Author Affiliations & Notes
  • Yalin Zheng
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
    St Paul’s Eye Unit, Royal Liverpool University Hospitals NHS Trust, Liverpool, United Kingdom
  • Yitian Zhao
    Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
  • Xu Chen
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
  • Dongxu Gao
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
  • Joshua Bridge
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
  • Wenyue Zhu
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
  • Bryan Williams
    Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
  • Footnotes
    Commercial Relationships   Yalin Zheng, NVIDIA (F); Yitian Zhao, None; Xu Chen, None; Dongxu Gao, None; Joshua Bridge, None; Wenyue Zhu, None; Bryan Williams, None
  • Footnotes
    Support  NVIDIA GPU Grant Program
Investigative Ophthalmology & Visual Science August 2019, Vol.60, PB038. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Yalin Zheng, Yitian Zhao, Xu Chen, Dongxu Gao, Joshua Bridge, Wenyue Zhu, Bryan Williams; Fully automatic localisation of the optic disc using YOLO in colour fundus photographs. Invest. Ophthalmol. Vis. Sci. 2019;60(11):PB038.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Detection of the optic disc (OD) is important for the management of eye disease. Knowledge of the OD is considered essential for the diagnosis and screening of many retinal diseases, with the OD centre often regarded as a reference point for locating other retinal structures in the assessment of colour fundus photographs. The purpose of this work is to develop a fully automatic method for the localisation of the OD from colour fundus photographs.

Methods : We propose a fully automatic method for OD localisation in colour fundus photographs. The proposed method is based on a YOLO (you only look once) network architecture, which allows the simultaneous localisation of an object of interest and detection of the bounding box. 2708 images from 7 publically available datasets were used along with corresponding manual OD annotations from expert graders. We trained the network on 1508 colour fundus images from 6 publically available datasets (DRIONS: 110; DRISHTI: 101; ONHSD: 88; ORIGA: 650; REFUGE: 400) and tested on the 1200 images from the 7th dataset (MESSIDOR). Localisation accuracy was evaluated in terms of ¼, ½ and one OD radius (ODR).

Results : State-of-the-art detection results were achieved, demonstrating the excellent performance of the method and robustness of the detection. The detected OD centres in 1149 images out of 1200 images (95.75%) were within ¼ ODR of the annotated centre. The detected OD centres were within ½ and one ODR for 1199 images (99.9%). Importantly, these results have been achieved in the external validation of our model with data from a different population. Six localisation examples are shown in the figure.

Conclusions : A reliable and accurate automation method was proposed for the localisation of the OD and validated on external data, achieving state-of-the-art results. This can save considerable amounts of time, improving disease management and diagnostic potential, and paving the way for complete, fully automated systems to be realised for diagnosing eye disease.

This abstract was presented at the 2019 ARVO Imaging in the Eye Conference, held in Vancouver, Canada, April 26-27, 2019.

 

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×