Abstract
Purpose:
To examine the biomechanical effects-induced wave-front aberrations after conventional laser refractive surgery.
Methods:
A finite element model of the human eye was established to simulate conventional laser refractive surgery with corrected refraction from –1 to –15 diopters (D). The deformation of the anterior and posterior corneal surfaces was obtained under the intraocular pressure (IOP). Then, the surface displacement was converted to wave-front aberrations.
Results:
Following conventional refractive surgery, significant deformation of the anterior and posterior corneal surfaces occurred because of the corneal biomechanical effects, resulting in increased residual wave-front aberrations. Deformation of the anterior surface resulted in a hyperopic shift, which was significantly increased with the increasing refractive correction. The residual high-order aberrations consisted of spherical aberration, vertical coma, and y-trefoil. Spherical aberration was significantly positively correlated to enhanced refraction correction. The effect of posterior corneal surface on induced wave-front aberration was less than the anterior corneal surface. The IOP slightly affects the postoperative defocus, coma, and spherical aberration. When treatment decentration occurred during the procedure, the hyperopic shift decreased as the eccentricity increased. Treatment decentration had a significant impact on the spherical aberration and the coma. In addition, the ocular tissue elasticity played a key role in hyperopic shift, whereas it had little effect on the other aberrations.
Conclusions:
Among the many factors that affect high-order aberrations after conventional laser refractive surgery, the alterations in corneal morphology caused by biomechanical effects must be considered, as they can lead to an increase in postoperative residual wave-front aberrations.
Refractive surgery is a safe and effective surgical method for correcting refractive errors, such as myopia, hyperopia, and astigmatism.
1 Vision correction is achieved by changing the curvature of the anterior surface of the cornea. LASIK involves the creation of a lamellar corneal flap, lifting of the flap, and ablation of the underlying stromal bed.
2 However, some clinical data have shown that LASIK could significantly increase the incidence of higher-order aberrations.
3 In fact, not only laser ablation profiles, but also the cosine effect of laser energy loss can result in an increase of higher-order aberrations. Even wave-front-guided refractive surgery cannot completely prevent the expansion nor the long-term, continuous increase of aberrations. Many studies have demonstrated that the increase in postoperative aberrations may be a result of biomechanical effects.
4 The tissue ablation of the stromal layer leads to biomechanical changes of the cornea, which in turn affects its shape,
5 resulting in increased incidence of residual wave-front aberrations. Therefore it is of great clinical significance to explore the biomechanical effects on the residual wave-front aberrations.
The finite element method is a computational tool that can be used to represent the geometric, biomechanical, and biological characteristics of a structure.
6 Although many studies have focused on the finite element model (FEM) of the cornea, little is known about the whole-eye three-dimensional (3D) model of LASIK, which accounts for the entire surface of the eye. Deenadayalu et al.
7 studied the effects of corneal elasticity, flap diameter and thickness, and intraocular pressure (IOP) on the refractive changes caused by LASIK corneal flap. Although the corneal topographic data of patients were used for curved surface simulation, the extrapolation of geometric points of the sclera caused obvious deviations.
7 Another study led by Roy and Dupps
6 focused on the effects of corneal elasticity on the deformation of the cornea before and after LASIK surgery and established an axisymmetric two-dimensional model of the whole eye. The same group also developed a 3D patient-specific FEM to theoretically compare the corneal stress distribution of LASIK with that of small-incision lenticule extraction (SMILE).
8 Bao et al.
9 developed and validated a numerical model of LASIK surgery by integrating the effects of corneal biomechanical behavior. Therefore finite element-based biomechanical models of the eye have become important in predicting the effects of LASIK.
Corneal biomechanical properties are related to structure stability, as well as material properties,
10,11 and this relationship has been established by several studies. Woo et al.
12 obtained the nonlinear material properties of the complete cornea and sclera through experimental measurement, finite element analysis, and axisymmetric mathematical modeling. Bryant and McDonnell
13 demonstrated that the corneal biomechanical response was nonlinear. Furthermore, Anderson et al.
14 studied the nonlinear response of the cornea through testing and mathematical analysis and applied the Ogden hyperelastic model to the cornea for simulation analysis. However, none of the earlier mentioned studies considered the material properties of the sclera based on the whole-eye 3D model. It is therefore necessary to consider the influence of the material properties of the cornea and sclera on the biomechanical properties after a patient undergoes LASIK.
Clinical data have shown that LASIK can cause high-order aberrations. Maeda et al.
15 demonstrated that the corneal ectasia after LASIK showed high-order aberrations dominated by coma on the anterior and posterior surfaces of the cornea. Agarwal et al.
16 found that, in patients with low myopia astigmatism, spherical aberration and total high-order aberrations increased by 0.085 µm and 0.13 µm, respectively, after wave-front-optimized LASIK. Hu et al.
17 discovered that the factor of IOP contributed to LASIK acting as a trigger for high-order aberrations, especially spherical aberration. The researchers also proposed that IOP should be integrated as a variable for laser surgery in the new algorithm to control high-order aberrations after LASIK.
17 In summary, researchers must consider the potentially significant influence of biomechanical factors in their study of corneal refractive surgery, which can be further accurately simulated by finite element analysis.
This study aims to evaluate the biomechanical effects-induced wave-front aberrations after conventional laser refractive surgery. Three-dimensional FEM of human eyes can be used for quantitative analysis of the wave-front aberrations introduced by the biomechanical effects quantification of the postoperative outcomes, and comparison of clinical findings to elucidate the biomechanical effects on higher-order aberrations after refractive surgery. It is not only important for the optimization of preoperative screening and postoperative visual quality, but also provides preventive measures to reduce the risk of iatrogenic corneal ectasia.
A previous study by Woo et al.
12 demonstrated that the cornea and sclera show nonlinear material properties. The properties of this nonlinear material can be summarized in a hyperelastic material model based on the Ogden strain energy function, which represents the hyperelastic, isotropic, and incompressible features of the cornea and sclera. The strain energy potential can be expressed as follows
19:
\begin{equation}W = \sum\limits_{i = 1}^N {\frac{{{\mu _i}}}{{{\alpha _i}}}} ({\bar \lambda _1}^{{\alpha _i}} + {\bar \lambda _2}^{{\alpha _i}} + {\bar \lambda _3}^{{\alpha _i}} - 3) + \sum\limits_{k = 1}^N {\frac{1}{{{d_k}}}} {(J - 1)^{2k}}\end{equation}
where
W is the strain energy potential,
\({\bar \lambda _p} = {J^{ - \frac{1}{3}}}{\lambda _P}\) is the deviatoric principal stretch,
J is the determinant of the elastic deformation gradient,
λp is the principal stretch of the left Cauchy–Green tensor, and
N,
µi,
αi, and
dk are material constants representing the tissue's hyperelasticity and compressibility.
The initial shear modulus µ is defined by:
\begin{equation}\mu = \frac{1}{2}\sum\limits_{i = 1}^N {{\alpha _i}} {\mu _i}\end{equation}
The initial bulk modulus
k is defined by:
\begin{equation}k = \frac{2}{{{d_1}}}\end{equation}
A higher value of N can provide a better fit to the exact solution. It may, however, cause numerical difficulties in fitting the material constants. For this reason, we choose N = 2 and N = 1 as corneal and scleral fitted parameters. The corneal fitted parameters are as follows: µ1 = 0.003535 Mpa, α1 = 103.51, µ2 = 0.003535 Mpa, and α2 = 103.61. The scleral fitted parameters are as follows: µ1 = 0.030224 Mpa, and α1 = 182.73. In addition, d1 is set to 0 to account for the near incompressibility of the cornea and sclera.
During conventional laser refractive surgery, the partial corneal stroma layer is ablated and the corneal thickness decreases, leading to changes in biomechanics effects that affect the corneal shape and alter the refractive state of the cornea. The change of the corneal shape is mainly represented by the displacement of the anterior and posterior surfaces of the cornea, and the change of the refractive state can primarily be observed in the induced wave-front aberrations after conventional laser refractive surgery. In other words, the displacement can be converted into an aberration. The specific analysis proceeds as follows:
- a) The displacement (ΔX, ΔY, and ΔZ) of the corneal surface nodes under IOP before and after refractive surgery were obtained from the FEM.
- b) The optical path difference of any arbitrary point on the corneal surface before and after IOP loading was calculated from ΔX, ΔY, and ΔZ. Because the cornea is considered to be spherical, the value of Z of any point A (X, Y, Z) on the corneal surface was calculated using the following equation:
\begin{equation}Z = \sqrt {{R^2} - {X^2} - {Y^2}} \end{equation}
here, R represents the radius of corneal curvature.
Significant corneal deformations were observed under the effect of IOP. At this time, the corresponding point of point A is A' (X+ΔX, Y+ΔY, Z+ΔZ). Then A' corresponds to point B (X+ΔX, Y+ΔY, Z+ΔZ-D) in the Z direction of the corneal surfaces before IOP loading, which can be defined mathematically by the following equations:
\begin{equation}Z + \Delta Z - D = \sqrt {{R^2} - {{(X + \Delta X)}^2} - {{(Y + \Delta Y)}^2}} \end{equation}
Schematic diagram of corneal deformation is expressed in
Figure 3.
Together with
Equations 6 and
7, the displacement D can be calculated
\begin{equation}D = \Delta Z - \sqrt {(R_{}^2 \!-\! {{(X + \Delta X)}^2} \!-\! {{(Y + \Delta Y)}^2}} \!-\! \sqrt {{R_{}}^2 \!-\! {X^2} \!-\! {Y^2}} \end{equation}
then optical path difference (OPD) can be obtained
\begin{equation}OPD = (n - 1)D\end{equation}
where
n is the refractive index of the cornea.
- c) Thus we obtained the preoperative Zernike coefficients by wave-front surface fitting from preoperative optical path difference. The same method can be used to obtain the Zernike coefficients after refractive surgery. The induced aberrations were obtained from the differences between the postoperative and preoperative wave-front aberrations, which were estimated as follows:
\begin{eqnarray}
{W_d}(x,y) &=& {W_{post}}(x,y) - {W_{pre}}(x,y)\nonumber\\
&=& \sum\limits_{i = 1}^M {{c_i}} {Z_i}(x,y) - \sum\limits_{i = 1}^M {{a_i}} {Z_i}(x,y)
\end{eqnarray}
here,
ci is the postoperative Zernike coefficient, and
ai is the preoperative coefficient.
First, the relationship between the induced aberrations by the anterior/posterior corneal surface displacement and the corrected refractions was discussed. Induced wave-front aberrations refer to the differences between the postoperative and preoperative induced wave-front aberrations from the corneal surface displacement under the same IOP loading. Second, the relationship between the induced wave-front aberrations from the anterior corneal surface and IOP was studied.
Effect of IOP on Induced Wave-Front Aberrations from Anterior Corneal Surface Displacement
Induced Wave-Front Aberrations from Anterior Corneal Surface Displacement with Treatment Decentration
Induced Wave-Front Aberrations from Anterior Corneal Surface Displacement at Large Pupil Size
Induced Wave-Front Aberrations from Anterior Corneal Surface Displacement with the Effect of Material Parameters of the Ocular Tissue
This study assessed the impact of the biomechanical effects of human eye on the wave-front aberrations after refractive surgery based on FEM. A quantitative approach was used to analyze the relationships between the induced aberrations from the biomechanical effect and myopic diopter or IOP. The induced aberrations were calculated from FEM models by focusing on the corneal deformation from the biomechanical effects. However, the Gullstrand classic eye model and the Munnerlynn-based profile was used, which did not consider the individual clinical data, and only wave-front aberrations induced from the biomechanical effect were considered in our research. This was a major limitation of the study. Furthermore, the residual wave-front aberrations from clinical measurements may be derived from the ablation profile, treatment decentration, wound healing, and dynamic characteristics of eye aberrations and also other factors. In addition, another limitation was that corneal asphericity and the epithelial remodeling was not considered, which may be a possible source of postoperative aberrations and further study is needed to clarify this issue. Therefore our results were not completely consistent with clinical data.
In this study, the corneal displacement included not only the displacement of the anterior and posterior corneal surfaces through the Z-axis, but also the displacement through both the X- and Y-axis, making the calculation of wave-front aberrations more accurate.
Our analysis found that the corneal flap induced coma, and the value of coma was associated with the position and shape of the connection, but not with the corrected refraction. However, without the impact of the corneal flap, only few comas were induced. In addition, there are some other asymmetric aberrations with smaller values, which can be attributed to nonrotational symmetry of surface fitting and meshing.
Our analysis also found that the material parameters of the corneal and scleral tissues played an important role in their biomechanical and optical behavior.
28 The material parameters of the cornea significantly affect the displacement of the anterior and posterior corneal surfaces. Moreover, once the scleral elasticity maintained a constant, with the increase of corneal elasticity, the maximum stress and maximum displacement moved toward the edge of the cornea. This finding was consistent with the studies published by Roy and Dupps.
6 Therefore further studies should focus on the effect of this result on the induced aberrations after refractive surgery. In addition, with the fixed material parameters of the cornea, the scleral material parameters still significantly affected the shape of the cornea. The material parameters of both the cornea and the sclera in this study were from previous publications. However, previous studies had shown significant individual differences in the corneal material parameters. The individual corneal material parameters was obtained by fitting a material model to experimental data of corneal tissue using the inverse finite element approach, but it had not been applied in clinical practice.
29 In fact, the proper in vivo measurement of the material parameters of cornea and sclera was required for the construction of a more precise and individual human eye FEM.
30
In addition, the factors affecting the biomechanical response after refractive surgery are too many. First, one factor is the refractive surgery procedures. Seven et al.
31 found that higher deformations and stresses were observed within the residual stromal bed in flap-based cases than SMILE cases. In the Sinha Roy et al.
32 work, SMILE may present less biomechanical risk in the corneal residual bed than comparable corrections involving LASIK flaps. Second, another factor is the microstructure of the corneal tissue, such as the local micromechanical properties of different layers in the cornea,
33 and the distribution of physiological collagen fibers exhibiting nonlinear anisotropy.
34 Finally, the factor is the large differences among individuals in biomechanical property. The accuracy of simulation-based LASIK outcomes could be improved by the establishment of patient-specific simulation.
35
Based on finite element analysis, the development of an individual eye model can help improve understanding of the biomechanics of the eye.
36,37 Future research finding would be closer to clinical measurement data by using the ablation profiles for different surgical procedures and the individual eye models. Our goal is to simulate the clinical situation as much as possible. In follow-up work, the effect of refractive surgery on the biomechanical properties may be better evaluated by constructing individual FEM of the human eye combined with treatment decentration, transition zone, corneal flap, optical zone size, IOP, and other parameters.
38 In addition, we would also focus on the data of stress and strain in the results of the finite element analysis to better understand the biomechanical characteristics of the human eye. Finite element method can become a valuable tool to plan and design refractive surgery
39 and other ophthalmo-surgical procedures to optimize the refractive outcomes and the visual function.
40
Using the human eye FEM to simulate conventional refractive surgery, we found that the corneal biomechanical effects resulted in significant changes in the anterior and posterior corneal surfaces and wave-front aberrations were induced. Our results showed that the anterior corneal surface displacement led to the hyperopic shift after refractive surgery. Especially with the increase of the corrected refraction, the hyperopic shift also increased. Higher corneal tissue ablation resulted in bigger biomechanical effects. The induced higher-order aberrations mainly included spherical aberration, vertical coma, and y-trefoil. The spherical aberration increased with the increases of the corrected refraction, whereas the change of the corrected refraction did not affect the vertical coma and y-trefoil. The induced aberrations from the corneal posterior surface displacement were much smaller than those of the anterior surfaces. IOP had a slight effect on the induced aberration after refractive surgery. With the increase of IOP, the hyperopic shift increased and tended to be stable, whereas the coma increased, and the spherical aberration decreased. Treatment decentration mainly affected coma and spherical aberration. The value of coma increased with the increase of treatment decentration. The induced aberrations were also affected by the material parameters of the ocular tissue. For example, when the scleral elasticity was constant and the corneal elasticity was increased, the induced aberrations decreased. The analysis based on FEM revealed that the biomechanical effects after refractive surgery were one of the main contributors to increases in residual wave-front aberrations. Therefore the biomechanical effects of the human eye should be considered in the design and analysis of refractive surgery.
Supported by the Natural National Science Foundation of China (NSFC) (61465010) and Jiangxi Nature Science Foundation (20192BAB207035). The authors alone are responsible for the content and writing of the article.
Disclosure: L. Fang, None; W. Ma, None; Y. Wang, None; Y. Dai, None; Z. Fang, None