June 2020
Volume 61, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2020
Defining a potential molecular basis for infantile nystagmus syndrome using an albino mouse model
Author Affiliations & Notes
  • Linda K McLoon
    Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
  • Laura Johnson
    Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
  • Footnotes
    Commercial Relationships   Linda McLoon, None; Laura Johnson, None
  • Footnotes
    Support  NIH R01Ey015313, University of Minnesota Internal Sabbatical Funds
Investigative Ophthalmology & Visual Science June 2020, Vol.61, 1140. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Linda K McLoon, Laura Johnson; Defining a potential molecular basis for infantile nystagmus syndrome using an albino mouse model. Invest. Ophthalmol. Vis. Sci. 2020;61(7):1140.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Infantile nystagmus syndrome (INS) is a gaze-holding disorder characterized by conjugate, uncontrolled oscillation of the eyes that can result in significant loss of visual acuity for most individuals. However, the majority of INS patients have no known contributing factors in the absence of known sensory afferent defects. Using a combinatorial strategy using the albino mouse model of nystagmus, we performed RNAseq on 6 different genotypes of mice based on level of pigmentation in an attempt to discover potential molecular differences that might account for nystagmus.

Methods : Oculomotor and abducens cranial motor neurons were dissected en bloc from the following mouse strains: C57BL6, 129S, B6(CG)-Tyr(c-2J)/J, DBA/1J, BALB/c, and CD-1. RNA was isolated using a Qiagen kit, and RNAseq analyses were performed in the Genomics Core at the University of Minnesota. Differential RNA expression levels were compared between the genotypes, and between either C57BL/6 or 129S6 or both and the albino/hypopigmented gene sets to determine expression that was over-expressed or under-expressed in the pigmented versus the albino and/or hypopigmented mouse models of nystagmus.

Results : The differential expression analysis from RNA isolated from oculomotor neurons identified 18 differentially expressed genes in albinos compared to the pigmented mice. A similar comparison for RNA isolated from abducens neurons identified 24 genes differentially expressed. Ingenuity pathway analysis showed differential expression levels in the EIF2 signaling pathway, which is related to response to cellular stress. Relative to disease, the most altered pathways included neurological disorders specifically involving genes that are related to motor control and coordination. When comparisons were made between both expression patterns for both pigmented mice compared to all non- or hypopigmented mice, both serpina3 isoforms and ribosomal protein S18 were differentially expressed, which have been implicated in ALS and ataxia, respectively.

Conclusions : Using this combinatorial strategy, several candidate molecules were identified whose primary functions are in cell cycle control, stress response, and motor control and coordination. How these interact to produce the uncontrolled oscillatory movements of INS are the subject of further study.

This is a 2020 ARVO Annual Meeting abstract.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×