June 2020
Volume 61, Issue 7
Open Access
ARVO Annual Meeting Abstract  |   June 2020
Understanding the uncertainties in modelling the growth of geographic atrophy in age-related macular degeneration
Author Affiliations & Notes
  • Janan Arslan
    Department of Surgery, Ophthalmology, University of Melbourne, Parkville, Victoria, Australia
    Centre for Eye Research Australia, East Melbourne, Victoria, Australia
  • Kurt K Benke
    Centre for AgriBioscience, State Government of Victoria, Bundoora, Victoria, Australia
    School of Engineering, University of Melbourne, Victoria, Australia
  • Robyn H Guymer
    Department of Surgery, Ophthalmology, University of Melbourne, Parkville, Victoria, Australia
    Centre for Eye Research Australia, East Melbourne, Victoria, Australia
  • Paul N Baird
    Department of Surgery, Ophthalmology, University of Melbourne, Parkville, Victoria, Australia
  • Footnotes
    Commercial Relationships   Janan Arslan, None; Kurt Benke, None; Robyn Guymer, Apellis (S), Bayer (S), Novartis (S), Roche (S); Paul Baird, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science June 2020, Vol.61, 2986. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Janan Arslan, Kurt K Benke, Robyn H Guymer, Paul N Baird; Understanding the uncertainties in modelling the growth of geographic atrophy in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2020;61(7):2986.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : To understand and quantify the growth rates of geographic atrophy (GA) in age-related macular degeneration using statistical methods to analyse inherent uncertainties.

Methods : Epistemic uncertainties arise from incomplete knowledge due to limitations in measurement devices, insufficient data or subjective human evaluation. This study identified epistemic uncertainties and investigated modelling the growth of GA using statistical approaches. Fundus autofluorescence (FAF) images were acquired along with progression data (e.g., total area of growth) using Spectralis HRA+OCT instrumentation and its associated RegionFinder software. Eyes with ≥3 visits and good quality FAF were used in the study. We describe sources of epistemic uncertainty associated with GA progression and, to address model uncertainty, tested five regression models to explain underlying growth and progression. Various statistical tests, including the coefficient of determination (r2) and the uncertainty metric (U = 1 - r2) were used. The tested models included linear, exponential, power, logarithmic and quadratic.

Results : A total of 81 cases with bilateral GA and 531 FAF images (range: 3-17 images per eye) over an average of 65 months (range: 23-119 months) were collected. The mean baseline lesion size was 2.62 mm2 (range: 0.11-20.69 mm2). Among the five regression models tested, the linear model was the most promising approach to predict the progression of GA. It had the smallest average uncertainty (U = 0.025) and highest average r2 (0.92). The hypothesis test for the significance of the correlation coefficient, r, supported the applicability of the model (p = 0.01). The linear model was a balance between statistical performance and physical assumptions, within the domain of application, and was easy to use, interpret and implement. Clinical assumptions suggest that progression will eventually taper off due to the limited space in which GA lesions can grow within the retina. It is suggested that the linear model identified is the linear portion of a growth model, such as a logistic function. Additional early-onset and end-stage data could expose the entirety of the GA growth process.

Conclusions : Statistical analysis of uncertainty suggests that the linear model provides an effective and practical representation of the rate and progression of GA, based on available data from patients in clinical presentations.

This is a 2020 ARVO Annual Meeting abstract.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×