June 2020
Volume 61, Issue 7
Free
ARVO Annual Meeting Abstract  |   June 2020
Safe non-viral light-based spatially targeted delivery of therapeutic opsin-encoding genes into specific cell types
Author Affiliations & Notes
  • Subrata Batabyal
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Sanghoon Kim
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Michael Carlson
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Darryl Narcisse
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Kissaou Tchedre
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Adnan Dibas
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Melissa Galicia
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Weldon Wright
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Samarendra Mohanty
    R&D, Nanoscope Technologies LLC, Bedford, Texas, United States
  • Footnotes
    Commercial Relationships   Subrata Batabyal, None; Sanghoon Kim, None; Michael Carlson, None; Darryl Narcisse, None; Kissaou Tchedre, None; Adnan Dibas, None; Melissa Galicia, None; Weldon Wright, None; Samarendra Mohanty, Nanoscope Technologies (E), Nanoscope Technologies (P), Nanoscope Technologies (I)
  • Footnotes
    Support  1R43EY026483-01, 1R43EY025905-01, 1R01EY025717-01A1, 1R01EY028216-01A1, 2R44EY025905-02A1
Investigative Ophthalmology & Visual Science June 2020, Vol.61, 4502. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Subrata Batabyal, Sanghoon Kim, Michael Carlson, Darryl Narcisse, Kissaou Tchedre, Adnan Dibas, Melissa Galicia, Weldon Wright, Samarendra Mohanty; Safe non-viral light-based spatially targeted delivery of therapeutic opsin-encoding genes into specific cell types. Invest. Ophthalmol. Vis. Sci. 2020;61(7):4502.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : In recent time, gene therapy has proven to be a promising remedial approach for treating visual disorders either by replacement of non functioning gene(s) or by the introduction of light sensitive proteins (opsins) as artificial photoreceptors in retinal cells. Conventional viral vector-based gene delivery method is often confronted with limitations due to packaging size limit, immunogenetic reaction, unintended non-targeted delivery, non-feasibility of repeated re-dosing due to immunorejection, and complicated manufacturing process, leading to significant roadblock in translational success. Most of the non-viral approaches lack spatial and/or cellular specificity and limited by low transfection efficacy and cytotoxicity. In this regard, we have developed an efficient, safe, targeted, light based non-viral gene delivery for ocular therapy.

Methods : We utilized functionalized plasmonic gold nanorods (fGNRs, targeted to attach to specific cell types of retina) and spatially targeted controlled light irradiation for delivering therapeutic genes into mice retina. The contrast in temperature rise in laser-irradiated nanorod-attached cells generate nano-hotspots which allows site-specific delivery of gene into targeted areas. Evaluation of safety and toxicity associated with the transduction of opsin-encoding genes by use of light irradiation was examined by electrophysiology, optical coherence tomography, intraocular pressure and other analytical methods (confocal microscopy, immunohistochemistry).

Results : Targeted in-vivo delivery and expression of opsin-encoding gene in specific retinal cells (e.g. bipolar and ganglion cell layers) was achieved by the use of cell specific fGNRs concurrent with light irradiation. No significant changes in ERG response and IOP was observed upon non-viral transfection in wild type mouse. The immunohistochemistry analysis showed no inflammation or migration of microglia/macrophage due to laser-based gene delivery. In case of blind mice, upon non-viral gene delivery, the functional rescue of light perception was observed.

Conclusions : Based on our results, we conclude that the light based targeted non viral gene delivery method is a safe, effective and translatable approach for targeted delivery of theraputic molecules and will pave the way for successful non-viral gene delivery in future.

This is a 2020 ARVO Annual Meeting abstract.

 

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×