June 2020
Volume 61, Issue 7
ARVO Annual Meeting Abstract  |   June 2020
Biomechanical model of lens growth and stretching
Author Affiliations & Notes
  • Matthew Aaron Reilly
    Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
    Ophthalmology and Visual Science, The Ohio State University, Columbus, Ohio, United States
  • Bharat Kumar
    Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
  • Footnotes
    Commercial Relationships   Matthew Reilly, None; Bharat Kumar, None
  • Footnotes
    Support  None
Investigative Ophthalmology & Visual Science June 2020, Vol.61, 5135. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Matthew Aaron Reilly, Bharat Kumar; Biomechanical model of lens growth and stretching. Invest. Ophthalmol. Vis. Sci. 2020;61(7):5135.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Purpose : Continuous growth of the adult lens is associated with the age of onset of both presbyopia and age-related cataract. However, the biomechanical aspects of adult lens growth have not been studied. In this study, the respective contributions of volumetric growth, capsule area dilation, and zonular tension are evaluated.

Methods : A computational model of adult human lens growth and stretching was constructed in COMSOL Multiphysics. The lens fiber cells were treated as an incompressible hydrogel which was subjected to swelling encapsulated by a membrane. The rate of swelling was linked to the strains in the lens capsule arising from equatorial stretching to simulate the strain-induced epithelial proliferation and resulting volumetric growth.

Results : Growth-induced strains in the lens capsule are highly anisotropic near the equator (Fig. 1A). These strains become more anisotropic still when zonular tension is applied (Fig. 1B).

Conclusions : Zonular tension drives changes in both epithelial cell proliferation and lens capsule directionality. Combined, these findings suggest that capsule strain directionality may significantly influence epithelial cell behavior. This also suggests a causal relationship between accommodation and morphogenesis.

This is a 2020 ARVO Annual Meeting abstract.



This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.