June 2020
Volume 61, Issue 7
Open Access
ARVO Annual Meeting Abstract  |   June 2020
Super-resolution imaging of flat-mounted whole corneal tissue
Author Affiliations & Notes
  • ZHEN CAI
    Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
    Department of Ophthalmology, Tongji Hospital, Tongji Medical College,HuaZhong University of Science and Technology, Wuhan, Hubei, China
  • Yang Zhang
    Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
  • Zheyuan Zhang
    Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
  • Lisa Beckmann
    Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
  • Hao Zhang
    Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States
  • Footnotes
    Commercial Relationships   ZHEN CAI, None; Yang Zhang, None; Zheyuan Zhang, None; Lisa Beckmann, None; Hao Zhang, None
  • Footnotes
    Support  R01EY026078, R01EY029121, R01EY028304, and R44EY026466
Investigative Ophthalmology & Visual Science June 2020, Vol.61, 910. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      ZHEN CAI, Yang Zhang, Zheyuan Zhang, Lisa Beckmann, Hao Zhang; Super-resolution imaging of flat-mounted whole corneal tissue. Invest. Ophthalmol. Vis. Sci. 2020;61(7):910.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Super-resolution microscopy revolutionizes biomedical research with unprecedented spatial resolutions up to 10 nm, while most of the imaging samples are cell cultures. The access to image whole intact tissue sample allows detecting regional differences in expression patterns within a cell and heterogeneity among individual cells. To date, only a few studies report super-resolution imaging of thin frozen tissue. Here, we show, for the first time, super-resolution imaging of flat-mounted whole corneal tissue using spectroscopic single-molecule localization microscopy (sSMLM).

Methods : We developed and optimized immunofluorescence staining method for sSMLM imaging of subcellular structures in flat-mounted whole corneal tissue. We performed immunofluorescence staining of mouse corneas after the freshly collected cornea tissues were fixed. We systematically compared immunofluorescence staining quality for sSMLM imaging at different incubation time, temperature, and antibody concentrations. For sSMLM imaging, the corneal piece was placed on a glass slide, covered with imaging buffer containing an enzymatic oxygen scavenger system to facilitate stochastic single molecule switching (blinking). The single-molecule blinking signals were collected using our sSMLM with electron multiplying charge-coupled device (EMCCD). Finally, super-resolution reconstructions of different samples were rendered using ThunderSTORM software, and imaging quality was assessed.

Results : We systematically screened immunofluorescence staining quality for sSMLM imaging and optimized the imaging conditions (4°C ,2 µg mL-1, 48 and 24 hours for primary and secondary antibodies respectively) for β-tubulin (Fig.1), vimentin and peroxisome marker for both epithelial and endothelial cells. Comparing with conventional fluorescence imaging, subcellular structures can be visualized with much greater details at ~25-nm resolution.

Conclusions : We optimized the immunofluorescence labeling protocol for flat-mount whole cornea tissues and performed sSMLM imaging to visualize intracellular cytoskeleton structures for the first time with ~25-nm resolution.

This is a 2020 ARVO Annual Meeting abstract.

 

Fig. 1. (a) sSMLM imaging of endothelial cells layer in flat-mount corneal tissue stained with β-tubulin. (b) the magnified view better shows the fine microtubule structures. (c) Histogram of localization precision distribution of ~ 106 single molecules collected to reconstruct the image in (a). Scale bar: 1 µm.

Fig. 1. (a) sSMLM imaging of endothelial cells layer in flat-mount corneal tissue stained with β-tubulin. (b) the magnified view better shows the fine microtubule structures. (c) Histogram of localization precision distribution of ~ 106 single molecules collected to reconstruct the image in (a). Scale bar: 1 µm.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×