June 2021
Volume 62, Issue 8
Open Access
ARVO Annual Meeting Abstract  |   June 2021
Characterization and Development of a Novel Loteprednol Etabonate Eluting Adhesive Ocular Patch
Author Affiliations & Notes
  • Ann Yung
    Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
  • Shima Gholizadeh
    Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States
  • Xi Chen
    Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States
  • Nasim Annabi
    Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, United States
  • Reza Dana
    Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
  • Footnotes
    Commercial Relationships   Ann Yung, None; Shima Gholizadeh, None; Xi Chen, None; Nasim Annabi, GelMEDIX Inc. (I); Reza Dana, GelMEDIX Inc. (I)
  • Footnotes
    Support  Department of Defense Vision Research Program Technology/Therapeutic Development Award (W81XWH-18-1-0654), Research to Prevent Blindness (RPB) Stein Innovation Award, The Tej Kohli Cornea Program at Mass. Eye and Ear, Mass. Eye and Ear Summit Fund, National Institutes of Health (R01EB023052, R01HL140618)
Investigative Ophthalmology & Visual Science June 2021, Vol.62, 737. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Ann Yung, Shima Gholizadeh, Xi Chen, Nasim Annabi, Reza Dana; Characterization and Development of a Novel Loteprednol Etabonate Eluting Adhesive Ocular Patch. Invest. Ophthalmol. Vis. Sci. 2021;62(8):737.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : Appropriate care of ocular injuries is vital to the preservation of vision. Full-thickness injuries are especially challenging in low-resource or emergency settings as current standards of care involve high surgical skill, equipment, and complex drug regimens. Nanoparticle (NP) based drug delivery systems (DDS) allow for localized tissue targeting with controlled drug release and dosages. Many anti-inflammatory ophthalmic drugs are class II compounds with low bioavailability due to their hydrophobic nature. Herein, we demonstrate a novel DDS by loading drug-laden micelles into a visible light photopolymerizable hydrogel patch with the potential to seal ocular injuries and elute a hydrophobic anti-inflammatory drug.

Methods : Micelle building blocks were synthesized via radical polymerization to create polyethyleneglycol-b-(N-(2-hydroxypropyl) methacrylamide-co-oligolactate (PEG-b-(pHPMAm-co-Lacn)). Micelle characterization utilized gel permeation chromatography (GPC) to obtain the polydispersity index (PDI), and proton nuclear magnetic resonance (1HNMR) to measure molecular weight (Mw). Micelle physicochemical properties were obtained with dynamic light scattering (DLS) and zetasizer analysis. Loteprednol Etabonate (LE) was encapsulated into micelles and loading efficiency and in vitro drug release were measured using high performance liquid chromatography (HPLC). Lastly, LE loaded micelles were incorporated into the patch composed of methacrylated biopolymers with varying concentrations.

Results : Synthesized micelle characterization showed a block co-polymer with Mw of ~20 kDa and a PDI of 1.46. LE was successfully loaded into micelles with a size of 100-120 nm and loading efficiency of ~ 30%. Micelles were stable for up to five days of incubation in buffer solution at 37°C. A first order (sustained) release of LE was demonstrated for 10 days, with 98% drug released on day 10. Micelles loaded into the patch showed complete and sustained release of LE within 10 days. DLS analysis of release media showed retention of micelles within the hydrogel network.

Conclusions : The adhesive patch successfully loads a hydrophobic drug and allows for sustained release for up to 10 days. Our NP DDS can address critical factors in ocular injury care by its potential use in ocular injury sealing and drug delivery which can increase drug bioavailability without need for complicated and high frequency drug regimen.

This is a 2021 ARVO Annual Meeting abstract.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×