June 2023
Volume 64, Issue 8
Open Access
ARVO Annual Meeting Abstract  |   June 2023
Radiomics-based assessment of Fundus Retinography (FR), optical coherence tomography (OCT) and OCT angiography (OCTA) images for Diabetes Mellitus and Diabetic Retinopathy diagnosis
Author Affiliations & Notes
  • Javier Zarranz-Ventura
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
    Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
  • Laura Carrera-Escale
    Universitat Politecnica de Catalunya, Barcelona, Catalunya, Spain
  • Anass Benali
    Universitat Politecnica de Catalunya, Barcelona, Catalunya, Spain
  • Ruben Martín-Pinardel
    Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
  • Carolina Bernal-Morales
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
    Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
  • Sara Marin-Martinez
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
  • Silvia Feu-Basilio
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
  • Josep Rosinés-Fonoll
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
  • Xavier Suarez-Valero
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
  • Teresa Hernández
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
    Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
  • Rafael Castro
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
  • Cristian Oliva
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
    Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Catalunya, Spain
  • Irene Vila
    Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
  • Alfredo Vellido
    Universitat Politecnica de Catalunya, Barcelona, Catalunya, Spain
  • Enrique Romero
    Universitat Politecnica de Catalunya, Barcelona, Catalunya, Spain
  • Footnotes
    Commercial Relationships   Javier Zarranz-Ventura Alcon, Alimera Sciences, AbbVie, Bausch & Lomb, Bayer, Brill Pharma, DORC, Esteve, Novartis, Oxular, Preceyes B.V., Roche, Topcon Healthcare, Zeiss, Code C (Consultant/Contractor); Laura Carrera-Escale None; Anass Benali None; Ruben Martín-Pinardel None; Carolina Bernal-Morales None; Sara Marin-Martinez None; Silvia Feu-Basilio None; Josep Rosinés-Fonoll None; Xavier Suarez-Valero None; Teresa Hernández None; Rafael Castro None; Cristian Oliva None; Irene Vila None; Alfredo Vellido None; Enrique Romero None
  • Footnotes
    Support  Instituto de Salud Carlos III (ISCIII) through the project PI18/00518 co-funded by European Union
Investigative Ophthalmology & Visual Science June 2023, Vol.64, 312. doi:
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Javier Zarranz-Ventura, Laura Carrera-Escale, Anass Benali, Ruben Martín-Pinardel, Carolina Bernal-Morales, Sara Marin-Martinez, Silvia Feu-Basilio, Josep Rosinés-Fonoll, Xavier Suarez-Valero, Teresa Hernández, Rafael Castro, Cristian Oliva, Irene Vila, Alfredo Vellido, Enrique Romero; Radiomics-based assessment of Fundus Retinography (FR), optical coherence tomography (OCT) and OCT angiography (OCTA) images for Diabetes Mellitus and Diabetic Retinopathy diagnosis. Invest. Ophthalmol. Vis. Sci. 2023;64(8):312.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Purpose : To evaluate the diagnostic accuracy of machine learning (ML) techniques applied to radiomic features extracted from fundus retinography (FR), optical coherence tomography (OCT) and OCT angiography (OCTA) images for diabetes mellitus (DM), diabetic retinopathy (DR) and referable DR (R-DR) diagnosis, in a dataset from a previous prospective OCTA study (ClinicalTrials.gov NCT03422965).

Methods : Radiomic features were extracted from FR, OCT and OCTA images in each study eye. Logistic regression (LR), linear discriminant analysis (LDA), support vector classifier (SVC)-linear, SVC-rbf and random forest (RF) models were created to evaluate their diagnostic accuracy for DM, DR and R-DR diagnosis in all images type. Models performance was described by their Area-under-Curve (AUC) mean and standard deviation (SD). Box-plots were generated to represent the mean performance of the models.

Results : A dataset of 726 eyes (439 individuals) were included. For DM diagnosis, the greatest AUC was observed for OCT (0.82, 0.03). For DR detection the greatest AUC was observed for OCTA (0.77, 0.03), especially in the 3x3 mm superficial capillary plexus OCTA scan (AUC 0.76, 0.04). For R-DR diagnosis, the greatest AUC was observed for OCTA (0.87, 0.12) and the deep capillary plexus OCTA scan (0.86, 0.08). The addition of clinical variables (age, sex, etc.) improved most models AUC for both DM and DR diagnosis.

Conclusions : Radiomics extracted from FR, OCT and OCTA images allow identification of DM, DR and R-DR patients using standard ML classifiers. OCT was the best test for DM diagnosis, OCTA for DR and R-DR diagnosis and the addition of clinical variables improved most models. This pioneer study demonstrates that radiomics-based ML techniques applied to OCT and OCTA images may be an option for screening in the community.

This abstract was presented at the 2023 ARVO Annual Meeting, held in New Orleans, LA, April 23-27, 2023.

 

Receiver operating characteristic (ROC) curves of models performance for Diabetes Mellitus (DM), Diabetic Retinopathy (DR) and Referable DR (R-DR) diagnosis. Left column: ROC curves for DM diagnosis detailed by models. Central column: ROC curves for DR diagnosis detailed by models. Right column: ROC curves for R-DR diagnosis detailed by models. Top row: example of a linear model (Linear discriminant analysis, LDA). Bottom row: example of a non-linear model (Support Vector Classifier – RBF).

Receiver operating characteristic (ROC) curves of models performance for Diabetes Mellitus (DM), Diabetic Retinopathy (DR) and Referable DR (R-DR) diagnosis. Left column: ROC curves for DM diagnosis detailed by models. Central column: ROC curves for DR diagnosis detailed by models. Right column: ROC curves for R-DR diagnosis detailed by models. Top row: example of a linear model (Linear discriminant analysis, LDA). Bottom row: example of a non-linear model (Support Vector Classifier – RBF).

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×