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The Carnitine Shuttle Pathway is Altered in Patients With
Neovascular Age-Related Macular Degeneration
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PURPOSE. To identify metabolites and metabolic pathways altered in neovascular age-related
macular degeneration (NVAMD).

METHODS. We performed metabolomics analysis using high-resolution C18 liquid
chromatography-mass spectrometry on plasma samples from 100 NVAMD patients and
192 controls. Data for mass/charge ratio ranging from 85 to 850 were captured, and
metabolic features were extracted using xMSanalyzer. Nested feature selection was used
to identify metabolites that discriminated between NVAMD patients and controls. Pathway
analysis was performed with Mummichog 2.0. Hierarchical clustering was used to
examine the relationship between the discriminating metabolites and NVAMD patients
and controls.

RESULTS. Of the 10,917 metabolic features analyzed, a set of 159 was identified that
distinguished NVAMD patients from controls (area under the curve of 0.83). Of these
features, 39 were annotated with confidence and included multiple carnitine metabolites.
Pathway analysis revealed that the carnitine shuttle pathway was significantly altered in
NVAMD patients (P ¼ 0.0001). Tandem mass spectrometry confirmed the molecular
identity of five carnitine shuttle pathway acylcarnitine intermediates that were increased in
NVAMD patients. Hierarchical cluster analysis revealed that 51% of the NVAMD patients had
similar metabolic profiles, whereas the remaining 49% displayed greater variability in their
metabolic profiles.

CONCLUSIONS. Multiple long-chain acylcarnitines that are part of the carnitine shuttle pathway
were significantly increased in NVAMD patients compared to controls, suggesting that fatty
acid metabolism may be involved in NVAMD pathophysiology. Cluster analysis suggested that
clinically indistinguishable NVAMD patients can be separated into distinct subgroups based
on metabolic profiles.

Keywords: metabolomics, age-related macular degeneration, long-chain acylcarnitines,
carnitine shuttle

Age-related macular degeneration (AMD) is the leading cause
of blindness in developed countries and is responsible for

8.7% of all blindness worldwide.1 Neovascular AMD (NVAMD),
in which blood or serous fluid leaks from abnormal choroidal or
retinal vessels, is responsible for the majority of cases of AMD-
related vision loss.2 The annual incidence of NVAMD in the
United States has been calculated at 1.8%, resulting in an
estimated 160,000 new cases each year.3

The etiology of NVAMD is complex, comprising genetic and
environmental factors. More than 30 genetic loci have been
associated with AMD risk.4 Additional risk factors include
advanced age, smoking, and body mass index (BMI).5,6 While
there have been significant advances in NVAMD treatment, a
more detailed understanding of AMD pathophysiology could

facilitate development of new NVAMD prevention and thera-
peutic strategies.

Metabolomics is one approach to discerning more compre-
hensively the molecular pathophysiology of disease. High-
resolution metabolomics detects endogenous and exogenous
metabolites in biofluids. The goal of metabolomics analysis is to
identify specific metabolites and metabolic pathways that are
altered in different health states. This approach has been
increasingly applied to ophthalmologic conditions,7 and several
metabolomics studies have identified metabolites with altered
plasma levels in AMD patients compared to controls.8–11 We
previously used high-resolution liquid chromatography with
mass spectrometry (LC-MS) to perform the first metabolome-
wide association study of AMD, comparing NVAMD patients to
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controls. While this original AMD metabolomics study had a
relatively small sample size, we identified differences between
NVAMD patients and controls in individual metabolites
including amino acids, vitamin D-related metabolites, and bile
acids.8

For the current investigation, we performed high-resolution
metabolomics via LC-MS in an entirely new and larger cohort of
NVAMD patients (n¼100) and controls (n¼192) to determine
individual metabolites and metabolic pathways altered in
NVAMD. Using a combination of statistical and machine
learning methods, we identified metabolic features altered in
NVAMD patients, and evaluated their ability to accurately
discriminate between NVAMD patients and controls. Addition-
ally, these metabolic features were used to identify biological
pathways that may be altered in NVAMD.

METHODS

Ethics Statement

This study was approved by the Vanderbilt University Medical
Center Human Research Protection Program. Research ad-
hered to the tenets of the Declaration of Helsinki and was
conducted in accordance with Health Insurance Portability and
Accountability Act regulations. Written informed consent was
obtained from all participants before study enrollment.

Study Participants

Study participants were recruited from the Vanderbilt Eye
Institute between 2002 and 2011. All patients were of
European descent and at least 55 years old at enrollment.
Each participant underwent a comprehensive eye exam
administered by a fellowship-trained retina specialist that
included slit-lamp biomicroscopy and dilated fundus examina-
tion with indirect ophthalmoscopy. High-resolution color
fundus photography was obtained via a Zeiss 450þ fundus
camera (Carl Zeiss Meditec, Dublin, CA, USA). Using the five-
step Clinical Age-Related Maculopathy Scale (CARMS),12 a
modified version of the Age-Related Eye Disease Study (AREDS)
grading system,13 each participant was assigned an AMD grade
from 1 to 5 based on the more severely affected eye. For the
current study, cases were NVAMD patients (n¼100) with AMD
Grade 5 in one or both eyes. Grade 5 was defined as extensive
AMD characterized by choroidal neovascularization, subretinal
hemorrhage or fibrosis, or photocoagulation scarring consis-
tent with AMD treatment. Of the 100 NVAMD patients, 92 had
Grade 5 in both eyes, while the remaining eight had Grade 4
(geographic atrophy) in the fellow eye. Controls (n ¼ 192)
were patients with AMD Grade 1 in both eyes, defined as fewer
than 10 small drusen and no macular pigment changes.

At study enrollment, using a 21- or 23-gauge butterfly
needle, blood was drawn from participants into 8.5 mL
Acetate-Citrate-Dextrose tubes containing 1.5 mL Solution A
(trisodium citrate 22.0 g/L, citric acid 8.0 g/L, and dextrose
24.5 g/L; Becton Dickinson, Franklin Lakes, NJ, USA). These
tubes were centrifuged for 10 minutes at 48C. Plasma was
transferred to 1.5 mL conical tubes and immediately stored at
�808C.

Detailed demographic information and history of environ-
mental exposures and comorbid medical conditions, including
height and weight, smoking status, diabetes, hypertension, and
hyperlipidemia, were collected via a self-administered question-
naire. BMI was calculated using the reported height and weight.
Participants who indicated they had ever smoked at least 100
cigarettes were considered smokers, while those who had
smoked fewer than 100 cigarettes were considered nonsmokers.

High-Resolution Untargeted Metabolomics

Frozen plasma samples were thawed and analyzed by LC-MS at
Emory University as described previously.14–19 Plasma samples
were randomized into 20-sample batches that included NVAMD
patients and controls. Plasma aliquots (65 lL) were treated
with 130 lL acetonitrile (2:1 vol/vol) containing 3.5 lL of an
internal isotopic standard mix17–19 and placed on ice for 30
minutes. Samples then were centrifuged for 10 minutes
(16,100g at 48C) to remove protein. The supernatants (10
lL) were loaded onto an Accela Open Autosampler maintained
at 48C. Each sample was analyzed in triplicate using a Thermo
LTQ Velos Orbitrap high-resolution (60,000 mass resolution)
mass spectrometer (Thermo Fisher Scientific, San Diego, CA,
USA) and C18 column chromotography.14,20 Elution was
obtained with a formic acid/acetonitrile gradient at a flow
rate of 0.35 mL/min for the initial 6 minutes and 0.5 mL/min
for the remaining 4 minutes. The first 2-minute period
consisted of 5% solution A (2% [vol/vol] formic acid in water),
60% water, 35% acetonitrile. The final 4-minute period was
maintained at 5% solution A, 95% acetonitrile. The mass
spectrometer was set to collect mass/charge ratio (m/z)
ranging from 85 to 850 over 10 minutes. Electrospray
ionization was used in positive mode for detection. For quality
control and assurance, pooled reference plasma was run before
and after each batch of samples.

Data Processing and Analysis

An adaptive processing software package, apLCMS (available in
the public domain at http://web1.sph.emory.edu/apLCMS/),
designed for use with high-resolution mass spectrometry data,
was used for noise removal and feature extraction, alignment,
and quantification.21 Each metabolic feature is defined by a
unique combination of m/z and retention time (RT). To
enhance the feature detection process and perform quality
evaluation, systematic data re-extraction and statistical filtering
were performed using xMSanalyzer (available in the public
domain at http://sourceforge.net/projects/xmsanalyzer/).22

Each sample was analyzed in triplicate, and coefficient of
variation (CV) was used to evaluate the quality of all features.
Pearson correlation within technical replicates was used to
evaluate the quality of samples.

Batch-effect correction was performed using ComBat.23 A
log2 transformation was applied to reduce heteroscedasticity
and normalize results. Quantile normalization was performed
to reduce between-sample variability.24 To increase confidence
for selection of discriminating metabolites, data were filtered
based on missing value criteria and only those features present
in at least 80% of either cases or controls and present in at least
50% of all samples were included in downstream statistical
analyses.

Feature Selection and Annotation

As is common practice when using machine learning methods,
the cases and controls were randomly divided into training and
test sets containing 70% and 30% of samples, respectively.25

The training set included 70 NVAMD patients and 134 controls,
while the test set included 30 NVAMD patients and 58 controls.
Nested feature selection was performed on the training set
using linear models for microarray data (LIMMA), variable
importance for projection (VIP) based on partial least squares
discriminant analysis (PLS-DA), support vector machine recur-
sive feature elimination (SVM-RFE), and random forest,
incorporated in the R packages CMA and mixOmics.26 Using
the GenerateLearningsets function in the CMA package, the
training set was randomly split into learning sets and validation
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sets 100 times, such that, for each iteration, the proportion of
cases and controls was the same as for the whole data set. The
GeneSelection function in the CMA package was used to
perform feature selection in each learning set.26 To allow for
identification of the most robust features and reduce the risk of
selecting noisy features, the final set of discriminating features
included those selected in at least 70% of learning sets by one
or more of the feature selection methods.27

Following nested feature selection, the fold change
between NVAMD patients and controls was calculated for
each discriminating feature. The features were annotated using
the R package xMSannotator, which uses a multilevel
clustering procedure based on intensity across all samples,
retention time, mass defect, and isotope/adduct patterns.28

Additionally, xMSannotator uses metabolic pathway associa-
tions to assign confidence levels for database matches.
Confidence levels range from zero to three, designating
annotations from no to high confidence, which reduces the
risk of false annotations and allows prioritization of computa-
tionally derived annotations for further experimental evalua-
tion and confirmation.28

Pathway Analysis and Hierarchical Cluster
Analysis

The discriminating features were used to perform pathway
analysis via Mummichog 2.0 (available in the public domain at
http://mummichog.org/), a program that combines metabolite
identification and metabolic pathway/network analysis.29,30

Pathways with an overlap size of four or greater were evaluated
further by ion dissociation mass spectrometry. Using the
hclust() function in R, 2-way hierarchical cluster analysis was
performed to visualize the relationship between discriminating
metabolite values and case-control status.

Ion Dissociation Mass Spectrometry (LC-MS/MS)

Ion dissociation mass spectrometry was performed for
representative discriminating metabolites detected in the study
samples. Samples were analyzed using a Thermo LTQ Velos
Orbitrap high-resolution (60,000 mass resolution) mass spec-
trometer (Thermo Fisher Scientific, San Diego, CA, USA)
operated in positive ion mode with 10-minute C18 column
chromatography and standard source conditions used for the
untargeted metabolic profiling. Before analysis, plasma pro-
teins were precipitated using acetonitrile (2:1 vol/vol) and
allowed to equilibrate for 30 minutes. Collision-induced ion
dissociation was accomplished using high purity N2 at a
normalized collision energy of 35%. The tandem mass
spectrometry data were processed using the xcmsFragments

function in XCMS,31–33 and the experimental spectra were
compared with in-silico fragmentation using MetFrag.34

Classification Accuracy Evaluation

The classification() function in the R package CMA was used
to test the classification performance of the discriminating
features using the support vector machine (SVM) classifier.26

Using the training set, the SVM hyperparameters were selected
by applying the tune() function in the CMA package. The
evaluation() function was used to assess the classification
accuracy based on the mean accuracy across the validation sets
and the overall accuracy in the test set, using area under the
receiver operating characteristic curve (AUROC) criteria.
Additionally, balanced accuracy rate (BAR) was calculated,
where BAR ¼ (CNVAMD þ Ccontrol)/2, CNVAMD is the number of
correctly classified subjects in the NVAMD group, and Ccontrol is

the number of correctly classified subjects in the control
group.

Statistical Analysis

Descriptive statistics for demographic and clinical variables
were calculated for the entire study population. Comparisons
between NVAMD patients and controls were made using a 2-
tailed t-test for continuous data (age and BMI) and a v2 test for
categorical data (sex, smoking status, diabetes, hypertension,
and hyperlipidemia). Using these same tests, we compared
demographic, environmental, and clinical variables between
the NVAMD patients from Cluster 1 and NVAMD patients from
all other clusters identified in the hierarchical cluster analysis
to determine if these variables differed between these two
groups.

To test for association between discriminating features and
age and sex, we performed separate linear regressions for each
feature, including age and sex in the regression model. A
Bonferroni correction for multiple testing was performed to
obtain an adjusted significance threshold.

RESULTS

The study population consisted of 292 patients, including 100
NVAMD patients and 192 controls. Demographic variables,
environmental exposures, and comorbid medical conditions
were compared between NVAMD patients and controls (Table
1). While NVAMD patients were older than controls, there
were no significant associations between NVAMD and sex,
BMI, smoking status, diabetes, hypertension, or hyperlipidemia
in this population.

Mass spectral data from LC-MS analysis of the 292 samples
yielded 18,881 ions (defined by m/z and RT), each with an
associated ion intensity. After data preprocessing and filtering
based on missing values, 10,917 features were used for further
analyses. The study population was divided into training and
test sets. The training set was used to identify potential
discriminating metabolites, and the test set was used to assess
the generalizability of the results and determine how well
those metabolites are able to differentiate between NVAMD
patients and controls in an independent set of samples. Nested
feature selection was performed on the training set with the
10,917 features, and a group of 159 metabolic features that
discriminate NVAMD patients from controls was identified
(Supplemental Table S1). Of these discriminating features, 110
were increased and 49 were decreased in the plasma of
NVAMD patients compared to controls.

Age and sex can be associated with metabolite levels.35 To
determine if these factors affected plasma levels of the

TABLE 1. Study Population Characteristics

Characteristic

Controls

(n ¼ 192)

NVAMD

(n ¼ 100) P Value

Age, y 71.9 79.2 4.8 3 10�16

Female, % 64.0 65.0 0.976

Smokers, % 49.5 61.0 0.080

BMI, kg/m2 26.9 26.8 0.801

Diabetes, % 18.0 23.3 0.401

Hypertension, % 51.4 60.9 0.180

Hyperlipidemia, % 53.7 49.4 0.604

Demographic, environmental, and clinical characteristics were
compared between NVAMD patients and controls using a t-test for
continuous variables and a v2 test for categorical variables. The mean
age and mean BMI are presented.
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discriminating features in this study, separate linear regressions
were performed for each of the 159 metabolites, including age
and sex as covariates. After correction for multiple testing,
neither age nor sex was associated with levels of any of these
metabolites (Supplementary Table S1).

The 159 discriminating features were annotated using
xMSannotator. Of these metabolites, 39 were annotated with
medium or high confidence (Table 2). Among these, multiple
features were annotated to acylcarnitines, bile acids, phospho-
lipids, lysophospholipids, and amino acids. To investigate
further, we performed pathway analysis with Mummichog 2.0.
This analysis showed that carnitine shuttle pathway metabo-
lites (P ¼ 0.0001; overlap size, 6 of 27) and bile acid
biosynthesis pathway metabolites (P ¼ 0.013; overlap size, 3
of 22) were overrepresented among the 159 discriminating
features. After adjusting for multiple comparisons using
Bonferroni correction, the carnitine shuttle pathway remained
significant, suggesting that this pathway is altered in NVAMD
patients.

Given that pathway analysis identified the carnitine
shuttle, and that multiple discriminating features were
putatively annotated to carnitines by xMSannotator, we
performed LC-MS/MS to confirm the molecular identity of
the six metabolites associated with the carnitine shuttle
pathway. LC-MS/MS analysis supported the identity of five of
these features as acylcarnitine intermediates (Table 3). As
measured in the untargeted LC-MS, plasma levels of these
long-chain acylcarnitines were significantly increased be-
tween 1.7 and 2.2-fold in NVAMD patients compared to
controls (Table 3; Fig. 1).

Hierarchical clustering was performed using the training set
to visualize how well the 159 discriminating features differen-
tiate NVAMD patients from controls. The results demonstrated
separation of the 204 individuals of the training set into 11
clusters (Fig. 2). Of the 70 NVAMD patients, 36 (51.4%)
clustered tightly together in Cluster 1, which also included
eight controls, indicating that these patients share a similar
metabolic profile in the context of the 159 discriminating
features. In contrast, the remaining 34 NVAMD patients were
distributed across five other clusters, each including a mixture
of cases and controls. The remaining five clusters included only
controls. To ensure that the clustering of the NVAMD patients
was not due to differences in demographic or clinical variables,
we compared these variables between NVAMD patients from
Cluster 1 and the NVAMD patients from all other clusters. The
tightly clustered NVAMD patients from Cluster 1 and the
remaining NVAMD patients did not differ by any demographic,
environmental, or clinical variables (Supplementary Table S2),
indicating that the clustering of NVAMD patients is not due to
any of these variables.

We evaluated the ability of the 159 metabolic features
identified using the training set to accurately discriminate
NVAMD patients and controls in the test set. Using the SVM
classifier, the 159 features produced a 10-fold cross-validation
balanced accuracy rate of 96.1% in the training set and a
balanced accuracy rate of 75.6% along with an area under the
curve (AUC) of 0.83 in the test set.

DISCUSSION

This large metabolome-wide association study identified a set
of 159 metabolites that partially discriminated between
NVAMD patients and controls in our cohort. Annotation of
the discriminating features using computational methods
followed by LC-MS/MS demonstrated differences in levels of
multiple long-chain acylcarnitines. Further evaluation of the
features using pathway analysis revealed that the carnitine

shuttle pathway was significantly altered in NVAMD patients.
Additionally, hierarchical cluster analysis revealed the potential
for clinically indistinguishable NVAMD patients to be classified
into metabolically distinct subgroups based on levels of
discriminating features.

Evidence suggests that lipid metabolism is a key factor in
the pathogenesis of AMD. Genes involved in lipid and
lipoprotein metabolism pathways have been associated with
AMD,4,36 and previous AMD metabolomics studies have
pointed to altered lipid metabolism.9,10 In our study, multiple
long-chain acylcarnitines from the carnitine shuttle pathway
were increased in NVAMD patients compared to controls.
Among these long-chain acylcarnitines was L-palmitoylcarni-
tine which was reported to be altered in a small cohort of
Chinese NVAMD patients compared to a non-AMD control
group.11 The carnitine shuttle pathway is responsible for
transporting long-chain fatty acids into the mitochondria for
subsequent catabolism via b-oxidation, in a process that
requires acyl-CoA and results in the esterification of L-carnitine
to form acylcarnitine derivatives.37 Additionally, in a gene-
based pathway analysis comparing exome sequence results in
NVAMD patients to non-AMD controls, Sardell et al.38 identified
enrichment of variants in the biosynthesis of unsaturated fatty
acids pathways. Thus, multiple lines of evidence suggest that
fatty acid metabolism may be involved in NVAMD pathogen-
esis.

Increased plasma levels of long-chain acylcarnitines have
been reported in other conditions, including cardiovascular
disease,39 heart failure,40 and type 2 diabetes.41 Each condition
has risk factors that also have been associated with AMD (e.g.,
hypertension, hyperlipidemia) suggesting common mecha-
nisms could be contributing to these diseases. It is possible
that perturbation of the carnitine shuttle leads to compromised
mitochondrial function, which could decrease cellular capacity
to handle reactive oxygen species, resulting in increased
cellular dysfunction and cell death. Targeted investigations of
carnitine shuttle enzymes and metabolites are necessary to
determine how the alterations in long-chain acylcarnitines
might contribute to NVAMD pathogenesis.

We also observed that some metabolic features with
matches to taurine-conjugated bile acids were increased in
NVAMD patients compared to controls. The bile acid
biosynthesis pathway was identified in the pathway analysis,
but was not significant after correction for multiple testing. In
our previous AMD metabolomics study, we identified the bile
acid biosynthesis pathway as altered in NVAMD patients.8 The
features identified in that study were matched to glycine-
conjugated bile acids and were decreased in NVAMD patients.
Taken together, the data from these two studies suggest that
bile acids are altered in NVAMD. Additional validation studies
are necessary to confirm these findings, and molecular
investigations are essential to determine the role of bile acids
in disease pathogenesis.

The hierarchical cluster analysis revealed distinct metabolic
profiles among NVAMD patients. Just over half of the NVAMD
patients in the training set exhibited similar metabolic profiles
and were assigned to a single cluster that included only eight
control samples. No clear metabolic relationship was identified
among the remaining NVAMD patients. We detected no
differences in demographic characteristics or comorbidities
between the NVAMD patients from the single cluster and the
remaining NVAMD patients, suggesting the observed clustering
is due to differences in plasma metabolic profiles. This
metabolic heterogeneity likely contributed to the modest
classification accuracy achieved when evaluating the 159
metabolites for their ability to accurately classify NVAMD
patients and controls in the test set. Given the tight clustering
of the NVAMD patients in Cluster 1, we hypothesize that these
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TABLE 2. Discriminating Features Annotated With Confidence

m/z

Retention

Time

(Seconds)

Fold

Change Putative Match (Chemical ID)

347.2217 217.7 5.90 Pinusolide (HMDB35130), (-)-Chimonanthine (HMDB30280), 10-Dehydrogingerdione (HMDB29476), 4-

Deoxyhumulone (HMDB36624), 12-Hydroxy-11-methoxy-81113-abietatrien-20-oic acid (HMDB38031), 4-

Deoxyadhumulone (HMDB37378), Corticosterone (HMDB01547), 21-Deoxycortisol (HMDB04030), ()-

Calycanthine (HMDB29561), 19-Hydroxydeoxycorticosterone (HMDB12612), 21-Hydroxy-5b-pregnane-31120-

trione (HMDB06756), 7-Carboxy-alpha-tocotrienol (HMDB12849), Cortexolone (HMDB00015)

220.0573 305.3 5.24 L-Oxalylalbizziine (HMDB39164)

251.1494 315.4 3.55 Isopentyl beta-D-glucoside (HMDB34750)

163.0545 222.9 3.16 1-Tridecene-357911-pentayne (HMDB35400), Methomyl (HMDB31804)

508.3758 359.3 2.45 LysoPC(P-18:0) (HMDB13122)

427.3570 360.3 2.23 29-Norcycloartane-324-dione (HMDB32084), 4alpha-Formyl-4beta-methyl-5alpha-cholesta-824-dien-3beta-ol

(HMDB12167), Stigmast-22-ene-36-dione (HMDB31931), Stigmast-4-ene-36-dione (HMDB38063), (6beta22E)-6-

Hydroxystigmasta-422-dien-3-one (HMDB39425), 7-Oxostigmasterol (HMDB30015), Momordenol

(HMDB31080), (3beta23E)-3-Hydroxy-27-norcycloart-23-en-25-one (HMDB37382)

425.3447 333.3 2.20 (22E24R)-Stigmasta-422-diene-36-dione (HMDB38656), Alpha-Tocotrienol (HMDB06327)

398.3261 352.8 2.17 9-Hexadecenoylcarnitine (HMDB13207), trans-Hexadec-2-enoyl carnitine (HMDB06317)

414.3575 343.4 2.16 Heptadecanoyl carnitine (HMDB06210)

274.1276 400.7 2.10 N-Despropyl-rotigotine (HMDB60841), Glutaconylcarnitine (HMDB13129)

401.3434 322.9 2.06 7-Ketocholesterol (HMDB00501), 7a-Hydroxy-cholestene-3-one (HMDB01993), Cholesta-814-diene-36-diol

(HMDB34328), Calcidiol (HMDB03550), 56-trans-25-Hydroxyvitamin D3 (HMDB06721), 25-

Hydroxytachysterol3 (HMDB06722), Alfacalcidol (HMDB15504), (3beta5alpha6a)- 1-Phenyl-13-

heneicosanedione (HMDB35585), 5-Methyl-24-bis(3-methyl-2-butenyl)-6-(2-methyl-1-oxopropyl)-5-(4-methyl-3-

pentenyl)cyclohexanone (HMDB36012), 5-(1215-Heneicosadienyl)-13-benzenediol (HMDB39871), 3beta-

Hydroxy-5-cholestenal (HMDB60131), 27alpha-Hydroxy-8-dehydrocholesterol (HMDB60132)

426.3566 342.8 2.03 Oleoylcarnitine (HMDB05065), 11Z-Octadecenylcarnitine (HMDB13338), Vaccenyl carnitine (HMDB06351),

Elaidic carnitine (HMDB06464)

400.3386 304.6 1.95 L-Palmitoylcarnitine (HMDB00222)

548.2445 325.0 1.88 Darunavir (HMDB15393)

506.3576 510.2 1.78 LysoPC(P-18:1(9Z)) (HMDB10408)

367.2715 427.1 1.74 Bepridil (HMDB15374)

396.3106 274.1 1.72 912-Hexadecadienoylcarnitine (HMDB13334)

491.1502 313.4 1.69 456-Trimethylscutellarein 7-glucoside (HMDB40512)

428.3709 376.7 1.65 Stearoylcarnitine (HMDB00848)

130.0499 196.7 1.64 1-Pyrroline-4-hydroxy-2-carboxylate (HMDB02234), Pyroglutamic acid (HMDB00267), Pyrroline

hydroxycarboxylic acid (HMDB01369), N-Acryloylglycine (HMDB01843), 5-Oxoprolinate (HMDB60262),

Pyrrolidonecarboxylic acid (HMDB00805), Dimethadione (HMDB61093)

274.6253 332.9 1.61 Darunavir (HMDB15393)

511.3602 379.5 1.53 LysoPC(17:0) (HMDB12108), LysoPE(0:020:0) (HMDB11481), LysoPE(20:00:0) (HMDB11511)

508.3390 387.7 1.52 Gymnodimine (HMDB41430), LysoPE(20:1(11Z)0:0) (HMDB11512), LysoPE(0:020:1(11Z)) (HMDB11482)

275.1255 321.0 1.50 Rutacultin (HMDB34132), 3-(11-Dimethyl-2-propenyl)-78-dimethoxy-2H-1-benzopyran-2-one

(HMDB33921)Gossyvertin (HMDB39660), Batatasin II (HMDB40929)

494.3240 311.8 1.49 LysoPC(16:1(9Z)) (HMDB10383)

258.1097 307.2 1.39 Pyro-L-glutaminyl-L-glutamine (HMDB39229), 5-Methylcytidine (HMDB00982), Glycerophosphocholine

(HMDB00086)

457.2333 248.4 1.32 1-Lyso-2-arachidonoyl-phosphatidate (HMDB12496)

479.3323 493.6 1.29 Dolicholide (HMDB34086), Polyporusterone A (HMDB38495)

493.1446 363.9 1.29 Americanin B (HMDB37338)

517.3065 331.6 1.25 Taurallocholic acid (HMDB00922), Taurocholic acid (HMDB00036), Tauro-b-muricholic acid (HMDB00932),

Tauroursocholic acid (HMDB00889), Taurohyocholate (HMDB11637), LysoPC(18:4(6Z9Z12Z15Z))

(HMDB10389)

535.2946 252.2 1.22 Corchoroside A (HMDB33846)

516.3040 331.2 1.21 Taurallocholic acid (HMDB00922), Tauro-b-muricholic acid (HMDB00932), Tauroursocholic acid (HMDB00889),

Taurocholic acid (HMDB00036), Taurohyocholate (HMDB11637), LysoPC(18:4(6Z9Z12Z15Z)) (HMDB10389)

240.0997 253.0 1.21 N-Ornithyl-L-taurine (HMDB33519)

649.3840 282.8 0.90 Lyciumoside III (HMDB39553)

818.5702 523.9 0.85 Multiple matches to phosphatidylethanolamine species

395.2762 395.4 0.59 2-(1415-Epoxyeicosatrienoyl) Glycerol (HMDB13651), 11-Hydroxyeicosatetraenoate glyceryl ester

(HMDB12530)

318.3001 253.8 0.47 Phytosphingosine (HMDB04610)

247.1438 162.7 0.39 Lenticin (HMDB61115)

241.1055 192.4 0.29 Ethyl 345-trimethoxybenzoate (HMDB38627), 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid

(HMDB61112), Isopropyl 3-(34-dihydroxyphenyl)-2-hydroxypropanoate (HMDB41756), 3-(345-

Trimethoxyphenyl)propanoic acid (HMDB30254)

Of the 159 discriminating features, 39 were annotated by xMSannotator with medium or high confidence. m/z ¼ mass-to-charge ratio. Fold
change was calculated as NVAMD patients versus controls.
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patients represent a metabolically-defined subgroup of NVAMD
patients that could be of clinical importance. It is possible that
metabolic variation could be responsible for some differences
observed among AMD patients in the timing of disease
progression. Further investigations in larger cohorts may allow
for subcategorization of AMD patients based on metabolic
profiles that could lead to improvements in clinical surveil-
lance or treatment.

The large cohort of nearly 300 NVAMD patients and
controls ascertained from the same institution with consistent
sample collection and processing is a strength of this study.
However, the study does not include intermediate AMD
patients. Therefore, it cannot be determined if the differences
observed between the groups are related specifically to
NVAMD or to AMD in general. Additionally, given the
complexity of determining the precise treatment history
relative to the plasma sample collection date, AMD treatment
was not considered in the analysis. An additional strength of

this study was the use of high-resolution LC-MS in combination
with powerful analytical tools. Untargeted high-resolution LC-
MS is a sensitive technique that provides broad coverage of low
and high abundance endogenous, environmental, and dietary
metabolites. This increases the likelihood of identifying
metabolites that are potentially relevant to AMD pathophysi-
ology. However, untargeted metabolomics via LC-MS provides
limited information on structural identity, and additional
studies using tandem mass spectrometry are necessary to
verify metabolite identities. In this study, to enhance confi-
dence in metabolite annotations, we prioritized features from
significant pathways and used a combination of computational
methods and targeted tandem mass spectrometry.

In summary, this metabolomics study identified multiple
long-chain acylcarnitines elevated in the plasma of NVAMD
patients, suggesting that alterations in the carnitine shuttle
pathway contribute to NVAMD pathophysiology. Further
investigation is necessary to determine if the elevated

TABLE 3. Features of the Carnitine Shuttle Pathway Verified by LC-MS/MS

m/z

Retention Time

(Seconds) Metabolite Fold Change P Value

398.3261 352.8 9-Hexadecenoylcarnitine (HMDB13207) 2.17 3.63 3 10�08

414.3575 343.4 Heptadecanoyl carnitine (HMDB06210) 2.16 5.60 3 10�08

426.3566 342.8 11Z-Octadecenylcarnitine (HMDB13338) 2.03 2.64 3 10�09

400.3386 304.6 L-Palmitoylcarnitine (HMDB00222) 1.95 2.94 3 10�08

428.3709 376.7 Stearoylcarnitine (HMDB00848) 1.65 2.37 3 10�08

LC-MS/MS was used to confirm the identities of the carnitine shuttle pathway long-chain acylcarnitines (metabolite identification confidence
level 242,43). Fold change was calculated in the training set as NVAMD patients versus controls. Metabolite values were compared between NVAMD
patients and controls using a t-test.

FIGURE 1. Plasma levels of multiple long-chain acylcarnitines are increased in NVAMD patients. Five long-chain acylcarnitines identified in the
training set via untargeted metabolomics and confirmed with LC-MS/MS are significantly increased in NVAMD patients (n ¼ 70) compared to
controls (n ¼ 134).
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acylcarnitine levels observed here are specifically related to
NVAMD or to AMD in general. Determining the timing of the
increased acylcarnitine levels in relation to AMD development
and progression could facilitate identification of potential
therapeutic targets for AMD. Additionally, this study revealed
heterogeneity in the metabolic profiles of clinically indistin-
guishable NVAMD patients. Determining the significance of
these metabolic similarities and differences could lead to a
greater understanding of disease progression and therapeutic
response in AMD patients.
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