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PURPOSE. This study aimed to establish an image-based classification that can reveal the
clinical characteristics of patients with dry eye using unsupervised learning methods.

METHODS. In this study, we analyzed 82,236 meibography images from 20,559 subjects.
Using the SimCLR neural network, the images were categorized. Data for each patient
were averaged and subjected to mini-batch k-means clustering, and validated through
consensus clustering. Statistical metrics determined optimal category numbers. Using a
UNet model, images were segmented to identify meibomian gland (MG) areas. Clinical
features were assessed, including tear breakup time (BUT), tear meniscus height (TMH),
and gland atrophy. A thorough ocular surface evaluation was conducted on 280 cooper-
ative patients.

RESULTS. SimCLR neural network achieved clustering patients with dry eye into six image-
based subtypes. Patients in different subtypes harbored significantly different noninva-
sive BUT, significantly correlated with TMH. Subtypes 1 and 5 had the most severe MG
atrophy. Subtype 2 had the highest corneal fluorescent staining (CFS). Subtype 4 had the
lowest TMH, whereas subtype 5 had the highest. Subtypes 3 and 6 had the largest MG
areas, and the upper MG areas of a person’s bilateral eyes were highly correlated. Image-
based subtypes are related to meibum quality, CFS, and morphological characteristics of
MG.

CONCLUSIONS. In this study, we developed an unsupervised neural network model to clus-
ter patients with dry eye into image-based subtypes using meibography images. We anno-
tated these subtypes with functional and morphological clinical characteristics.

Keywords: dry eye disease, meibomian gland dysfunction, unsupervised learning, image
clustering

Dry eye disease (DED) is an ocular surface disorder
characterized by disruption of tear film stability and

affects millions of people worldwide.1 The latest interna-
tional consensus of dry eye experts classifies DED as aque-
ous deficiency dry eye (ADDE) due to insufficient tear secre-
tion and excessive evaporation due to abnormal physiol-
ogy of the meibomian glands (MGs).2 The MG is a key
factor that should be paid attention to in every patient with
dry eye. Meibomian gland dysfunction (MGD) is the most
common cause of DED.3 According to the current estima-
tion of DED, patients with mixed types of DED account
for over 25% of all.4 These individuals also exhibit higher
expenditures in comparison to those afflicted solely with
MGD or ADDE.5 However, the current step-wise treatment
recommendations for DED faces a challenge in predict-
ing relative benefits of specific management options due

to the lack of a better differentiation of patients by DED
subtype.6

The role of MG’s structural changes is becoming more
and more important in the diagnosis and treatment of DED.
Because meibography enables the morphology of MGs to
be visualized, several studies have demonstrated methods
for obtaining image parameters and grading MGD.7–9 The
area of dropout (atrophy) of the MGs was the first recog-
nized image-based measure of MGD and is considered one
of its most critical and closely related parameters. The
meiboscore10 and Meiboscale11 are assigned by clinicians
through subjective quantification of the area of MG loss.
Besides, the Dry Eye Assessment and Management (DREAM)
Study12 has addressed a list of MG morphological parame-
ters including “distorted,” “tortuous,” “hooked,” “abnormal
gap,” “overlapping,” “fluffy areas,” “tadpoling,” “thinned,”
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“thickened,” “ghost,” “no extension to lid margin,” “short-
ened,” and “dropout (atrophy).” Many studies attempted
to interpret clinical correlation information from captured
MG morphological parameters with the intention of further
improving the meibography evaluation system.13,14 Never-
theless, the correlation of a single parameter with the clin-
ical examination is not comprehensive, and the research
results are not very accessible for clinical application situ-
ations. Therefore, there is currently no recognized grading
standard that can include the multiple morphological param-
eters mentioned above.

Automated algorithmic systems to detect MG morpho-
logical abnormalities based on segmentations of meibog-
raphy images are currently an area of interest for many
researchers.15–17 Although segmentation-based machine
learning achieves a fast production of the manual labeling
parameters, there was no attempt to explore the associa-
tion of information from morphology images with clinical
features of dry eye. In this regard, exploring a meibography
grading system that can extract integrated image information
as well as characterize the clinical functional differences may
provide a direct method in the clinical decision making.

The unsupervised learning method is independent of
data annotation and can be used to cluster image datasets
into different classes,18 which can be effective to discover
new subtypes of clinically relevant features in computed
tomography scans and pathological images.19–21 Previously,
one study has applied unsupervised learning approach for
the automated assessment of the severity of MG atrophy
in meibography images, and demonstrated a high accu-
racy of 80.9% for the meiboscore grading.22 However, they
did not directly relate image information to assessments
of patients with dry eye, including tear secretion function,
ocular surface clinical features, and self-conscious symp-
toms. In the present study, we attempted to establish an
unsupervised neural network model based on meibogra-
phy images to cluster patients with dry eye into image-
based subtypes. The main aim was to annotate the differ-
ent subtypes of patients with dry eye with functional and
morphological clinical characteristics based on the meibog-
raphy. The image-based subtypes bring a new direction to
the classification of DED.

PATIENTS AND METHODS

Study Design and Patients

This cross-sectional, observational study included 20,559
subjects with subjective symptoms (burning, stinging, itch-
ing, tearing, gritty feeling, foreign-body sensation, and fluc-
tuating visual acuity) and evidence of tear film instabil-
ity (fluorescein tear breakup time [FBUT] ≤ 5 seconds or
noninvasive tear breakup time [NIBUT] < 10 seconds or the
Schirmer I test (without anesthesia) ≤ 5 mm/5 minutes). All
subjects were investigated at the Dry Eye Center of the Eye
Hospital of Wenzhou Medical University, Hangzhou, for dry
eye management from January 2, 2021, to March 31, 2022.
The present study was approved by the Ethics Committee
of the Eye Hospital of Wenzhou Medical University (2022-
020-K-17) and complied with the Declaration of Helsinki.
MG images obtained from 20,279 subjects were included
in our study; an ethics committee waived the requirement
of informed consent for the inclusion of these data. Addi-
tionally, 280 subjects provided written informed consent to
undergo detailed evaluation of the ocular surface for the
study.

Clinical Assessments and Meibography

Infrared images of the MGs in 20,559 patients’ bilateral
upper and lower eyelids and measurements of tear menis-
cus height (TMH) and NIBUT were obtained using a Kerato-
graph 5M (Oculus, Wetzlar, Germany). An infrared light
that does not cause tearing was focused on the center
of each patient’s lower lids; the patients were asked to
gently blink once, after which the infrared light was quickly
replaced with white light to complete the shot. The TMHwas
measured three times per eye by one experienced examiner
using the Keratograph 5M measurement tool, and the aver-
age value was recorded. The Keratograph 5M recorded a
video of the tear film changes while the patient’s eyes were
continuously open, and the first NIBUT and average NIBUT
were automatically calculated.

For the 280 patients who were able to cooperate in
the detailed evaluation, the Ocular Surface Disease Index
(OSDI) questionnaire was administered at the first visit. The
purpose of the questionnaire was explained by a physician
(author H. Z.) specializing in DED. Additionally, regular staff
members were present throughout the process and helped
to explain each question to ensure that the patients’ answers
to each question were based on a full understanding. The
OSDI contains 12 items, and each answer is scored on a
5-point scale, representing the frequency of the situation.
Patients were classified into four categories according to the
OSDI score ranges established by valid clinical trials: normal
(scores 0–12), mild dry eye (scores 13–22), moderate dry eye
(scores 23–32), and severe dry eye (scores 33–100).23

Lid margin findings were evaluated for the upper and
lower eyelids with the use of a slit-lamp microscope. Corneal
fluorescent staining (CFS) was scored from 0 to 12.24 The
FBUT was measured three times consecutively after the
instillation of fluorescein, and the mean value was used. For
each patient, we pressed the central eight MGs in the central
area of the lower eyelid and averaged the meibum quality
scores of the opened glands25 (0 = clear fluid; 1 = cloudy
fluid; 2 = cloudy fluid containing particulate matter; and
3 = opaque, toothpaste-like meibum); we then took the aver-
age score of the left and right eyes. The expressibility of
5 MGs in the central area of the lower eyelid was tested by
applying firm pressure and scoring the presence or absence
of meibum secretion on a scale from 0 to 3: 0 = all glands
expressible; 1 = 3 to 4 glands expressible; 2 = 1 to 2 glands
expressible; and 3 = no glands expressible.26 Meiboscore
and MGs’ morphological characteristics were scored by two
DED experts (authors Y. F. and S. L.) using the previously
defined methods.27,28 Each patient’s four eyelids were scored
separately, and the scores of the two experts were aver-
aged to obtain the final meiboscore. Each patient’s four
eyelids were assessed for main MGs’ morphological charac-
teristics12,29 separately including dropout/atrophy, thinned,
thickened, tortuous, overlapping, uneven, and normomorph,
with a score of 1 given for each characteristic. The total
score for each person is obtained by summing the scores
of four eyelids, and the morphological score for each
subtype is determined by averaging the scores of specific
abnormalities.

Creating Meibography Image Clusters Using
Unsupervised Clustering Models

We used Lightly (https://github.com/lightly-ai/lightly), a
self-supervised learning framework, to train a SimCLR
network with 82,236 images from 20,559 patients. The
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model was trained for a total of 500 epochs using the
Stochastic Gradient Descent (SGD) optimizer, configured
with an initial learning rate of 0.1, a momentum param-
eter of 0.9, and a weight decay parameter of 5e-4. Our
SimCLR implementation uses a projection head with an
input dimension of 512, corresponding to the feature dimen-
sion of the ResNet-34 backbone, a hidden dimension of
512, and an output dimension of 160. The loss function
utilized for training was the Normalized Temperature-Scaled
Cross-Entropy Loss (NTXentLoss), and a CosineAnnealingLR
scheduler was applied for learning rate decay. The training
batch size was set to 256. We used the ResNet-34 architec-
ture as the backbone for feature extraction. Data augmenta-
tion techniques applied during training included vertical flip
(with a probability of 0.5), random rotation (with a proba-
bility of 0.5), horizontal flip (with a probability of 0.5), and
conversion of all images to grayscale. The model was trained
on a rack-mounted server equipped with an NVIDIA RTX
3090 graphics processing unit (GPU). The network could
embed any image into a vector reflecting its features. We
encoded four images per patient into four vectors using
the SimCLR network and used their mean vector as the
final embedding vector. We clustered these vectors with
mini-batch k-means algorithm and consensus clustering. We
calculated Bayesian information criterion (BIC) and Davies–
Bouldin score (DB) to determine the number of subtypes.
We removed subtypes with fewer than 50 patients and classi-
fied patients into 6 image-based subtypes, and we visualized
the embedding vectors using principal component analysis
(PCA), t-distributed stochastic neighbor embedding (t-SNE),
linear discriminant analysis (LDA), and uniform manifold
approximation and projection (UMAP) in Supplementary
Figure S1.

MG Dropout of the Identified Meibography
Image-Based Subtypes

We built two semantic segmentation models to segment MGs
and eyelids in meibography images. We used Keras frame-
work to implement Attention U-net model by Oktay et al.30

For MG segmentation, we used images and masks from the
public MGD-1K dataset by Saha et al.31

We defined the upper tarsal area vertically from the
lid margin line to the tarsal fold edge, and the lower
tarsal area horizontally from the lacrimal punctum to the
lateral canthus. Y. Wang annotated the images and S. Li
verified the images. Four hundred fifty-six images were
used to build the E model. We trained another Atten-
tion U-net model to segment tarsal plate in meibography
images. The 2 models were both trained for a total of 100
epochs using the Nadam optimizer with a learning rate
of 1e-4. The input dimension for the model was set to
256 × 256 pixels with 3 color channels. For the loss func-
tion, we utilized a custom loss function based on the
Dice coefficient, specifically the dice loss, which measures
the overlap between the true and predicted segmentation
masks. The batch size used during training was set to eight.
Additionally, two callbacks were used during training: the
ReduceLROnPlateau callback, which reduces the learning
rate by a factor of 0.1 whenever the validation loss does
not improve for 4 consecutive epochs, and the EarlyStop-
ping callback, which terminates the training process if
the validation loss does not improve for 10 consecutive
epochs, while restoring the best weights observed during
training.

We calculated the MG and the tarsal area in the upper
and lower eyelids in different subtypes from segmentations;
pixels with >50% probability of being foreground in each
model were the MG or tarsal areas. To compare the MG areas
between patients and reduce the bias to the tarsal area, we
calculated the normalized MG area in the upper or lower
eyelid, which is the ratio of the MG area to the corresponding
tarsal area; the tarsal area was the sum of the elementwise
product of the segmented tarsal plate; and the MG area was
the sum of the segmented MGs. We used these models to
calculate the normalized MG area for all 82,236 images.

Statistical Analysis

All quantitative variables were analyses as continuous vari-
ables in this study. We used 1-way ANOVA to compare clini-
cal features in different subtypes; the Shapiro-Wilk test was
used for data normality. For non-normal features, we used
the Kruskal-Wallis test. We measured the correlation of clini-
cal features with Spearman’s rank correlation coefficient and
tested significance with permutation test. We did all analy-
ses with the SciPy package. Missing data were ignored in
between-group comparisons for each variable.

RESULTS

The present study included 20,559 patients with DED; the
mean age of the patients was 34.0 ± 21.9 years. Figure 1
shows a flow chart of this study. In particular, after construct-
ing a dataset of the patients’ meibography images, we built a
SimCLR network to embed these images into image vectors,
and four vectors from the same patient were averaged to
obtain a unique vector for this patient. We implemented a
consensus clustering strategy to cluster these patient vectors
into 2 to 16 clusters. Figure 2A shows that clustering patients
into 8 clusters achieved the best performance. The cluster-
ing results are visualized in Figure 2B, which shows 6 major
clusters and 2 clusters harboring fewer than 50 patients each.
These 2 clusters were removed for downstream analysis,
and patients were ultimately classified into 6 image-based
subtypes, which contained at least 1882 patients each. For
each subtype, we visualized 12 images of 3 patients, and
several subtypes showed distinct image features, as shown
in Figure 2C. Morphological characteristics of meibomian
glands in 280 patients are summarized in the Table, which
show that subtype 1 and subtype 5 has the largest atrophy
area of the MGs with uneven glands, subtypes 2 and 3 has
the most tortuous glands, subtype 3 has the most MGs with
normal morphology, subtype 4 has the most overlapping
glands, and subtype 6 has the most thickened glands.

Figures 3A and 3B presents that the neural network can
efficiently identify the MGs in the images from the MGD-1K
dataset, and we visualized the segment results in Supple-
mentary Figure S1. Figure 3C illustrates the differences in the
normalized gland area between the different image-based
subtypes and shows that subtype 3 and subtype 6 had the
largest gland area. Figure 3D compares the correlation of
this parameter between the upper and lower eyelids and
between the left and right eyes; interestingly, whereas the
normalized MG areas of the patients’ bilateral upper eyelids
were highly correlated, the correlation between the upper
and lower eyelids of a single eye was weaker.

A detailed evaluation of the ocular surface, including
OSDI, fluorescein BUT, CFS, meibum expressibility, meibum
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FIGURE 1. Schematic of the analysis pipeline. Meibography images of patients with dry eye and related clinical information were collected
from 2021 to 2022. Unsupervised SimCLR network was trained using meibography images, and the images were embedded into vectors
using the network. Average vector of four images of one patient were calculated and considered as the image vector of the patient. Then,
consensus clustering was applied to group patients into six major image subtypes, and the differences of the clinical features among image
subtypes were analyzed.

FIGURE 2. Consensus clustering of dry eye patients using meibography images. (A) Clustering metrics of different number of clusters (k =
2, 3, …, 16). Davies-Bouldin score (DB) and Bayesian Information Criterion (BIC) of different number of clusters were calculated, and k = 8
achieves lowest DB and less BIC. (B) Consensus matrix of k = 8. Six major clusters (> 50 patients) and two minor clusters (< 50 patients)
were obtained. (C) Examples of clustering results of six major clusters (subtypes). For each cluster, 12 images of 3 patients are shown.

quality, and lid margin abnormalities, was performed in
280 cooperative patients. Missing data were ignored in
between-group comparisons for each variable, including
13 patients without OSDI, 22 patients without fluores-
cein BUT, 19 patients without CFS, and 13 patients with-
out meibum expressibility. We compared these features in
different imaging-based subtypes and found a significant

difference in fluorescein BUT, CFS, meibum expressibility,
meibum quality, and lid margin abnormalities. As witnessed
in Figures 4E to 4H and the Table, these results suggest that
image-based subtypes are related to the abovementioned
clinical features. Figures 4A and 4B showed that patients
in different subtypes harbored significantly different tear
meniscus heights, for example, patients in subtype 4 had
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FIGURE 3. Area of meibomian gland regions differ among image subtypes. (A) Illustration of deep learning models segment eyelid area
(E model) and meibomian gland regions (G model). The ratio of outputs of two models is defined as the normalized gland area of the
meibomian gland region. (B) Dice coefficient of E model and G model in training processes with an early-stop patience. (C) Normalized
gland area of 6 subtypes was compared using 1-way ANOVA analysis, and F-test was applied to calculate the P values. (D) Normalized gland
area of different eyelids in patients with dry eye. Spearman’s rank correlation coefficient was calculated and shown.

the lowest tear meniscus height, and patients in subtype
5 had the highest tear meniscus height. Data from the left
and right eyes showed consistent results. Figure 4C shows
that patients in different subtypes also harbored significantly
different NIBUT values. As observed in Figure 4D, the NIBUT
was significantly correlated with TMH. We analyzed the
OSDI of patients in different subtypes to explore the rela-
tionship between imaging and subjective symptoms of dry
eye in Figure 4I, and the results suggest that image-based
subtypes do not differentiate between symptoms.

DISCUSSION

Meibography has become widely used to assess the morpho-
logic changes in the MG for the diagnosis of DED, most
previous studies have focused on using artificial intelligence
(AI) algorithms for rapid recognition and statistics of already
labeled features.7 Labeling is usually time consuming and

results in an increasing number of parameters,12 not all of
which are necessary. As the DREAM study has introduced a
long list of MG morphology metrics, most of them have yet
to be fully vetted as DED diagnostic tools.12,28 The interpre-
tation of the meaning of a single image parameter is not
easily applied in actual practice. In addition, the current
grading system32 is dependent on the dropout of the MGs
and does not incorporate any of the above image parame-
ters. The staged management algorithm for DED is intricate
due to its multifactorial etiology. Therefore, a quickly and
directly grading system holds significant relevance in the
clinical evaluation and treatment of patients. Unsupervised
learning uses a variety of information without being defined
that may contain features relevant to clinical examination
results. Studies on computed tomography scans and patho-
logical images have provided with new subtypes of clini-
cally relevant features to facilitate clinical decision making,
suggesting that image information can provide new insights
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FIGURE 4. Image-based subtypes are corelated with clinical features. (A, B) Tear meniscus height of the left and right eyes of 6 subtypes
were compared using 1-way ANOVA analysis, and F-test was applied to calculate the P values. (C) Noninvasive tear breakup time of
6 subtypes was compared using 1-way ANOVA analysis, and F-test was applied to calculate the P values. (D) Noninvasive tear breakup time
is correlated with tear meniscus height. Patients are merged into 100 bins, and the related 2-sided P value was shown. Clinical features,
including meibum expressibility (E), CFS (F), fluorescein tear break-up time (G), meibum quality score (H), and OSDI (I) of 6 image-based
subtypes was compared using 1-way ANOVA analysis, and F-test was applied to calculate the P values.

into disease. However, an unsupervised learning approach
was not used to discover new imaging-based subtypes that
can characterize the functional differences of DED.

The current study demonstrated the feasibility of using
unsupervised learning to discover new imaging-based
subtypes of DED. We annotated the six subtypes of patients

with different clinical characteristics using tear stability
evidence. The different image subtypes were correlated with
tear break-up time and tear meniscus height (see Fig. 4).
Previous works suggest that tear breakup time is an impor-
tant examination to assess tear quality for patients with DED
and is correlated with tear meniscus height,33,34 which is
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consistent with our results. In addition, we noted that the
image-based subtypes could be related to meibum express-
ibility and cerebrospinal fluid (CFS; see Fig. 4). The Inter-
national Workshop on MGD indicated that meibum express-
ibility is useful for the diagnosis and staging of MGD-related
dry eye.32 MGD is divided into two major categories based
on meibomian gland secretion: low delivery (containing the
hyposecretory and obstructive subtypes) and high delivery
(the hypersecretory subtype). Meibum quality and express-
ibility are used to evaluate MG function. However, some
patients have characteristics of both the hypersecretory and
obstructive subtypes. Some researchers have suggested that
the classification system of MGD should be modified to
include patients with various types of characteristics.13 The
results of the present study suggest that our new MGD clas-
sification system based on the clusters classified by unsu-
pervised learning may be a good approach to establish the
correspondence between image-based features and function.

The latest international consensus on the classification
of patients with DED is based on the concept of tear film–
oriented diagnosis. There are three basic types of dry eye,
defined by their causes: increased evaporation, aqueous
deficiency, and decreased wettability.35 However, it is diffi-
cult to strictly distinguish between the aqueous deficiency
type of dry eye and the increased evaporation type, and a
hybrid form has been proposed.36 The Asia Dry Eye Soci-
ety (ADES) has proposed a simple classification of dry
eye based on fluorescein breakup patterns.37 A previous
work38 has demonstrated that the lid margin abnormality
score correlates with the meiboscore. One work39 explored
different types of lid margin abnormalities in detail and
found that an irregular lid margin was associated with the
meiboscore, but vascular engorgement, plugging, and ante-
rior placement of the Marx line did not significantly affect
the meiboscore. In this study, six image-based subtypes were
correlated with lid margin vascularity, thickness, irregular-
ity, foam, and scaliness. There are no other previous studies
correlating meibography parameters with lid margin abnor-
malities. Some experts have also suggested reconsidering
the importance of the frequency of symptoms in classifying
DED.40 Previous studies demonstrated that the OSDI showed
good sensitivity and specificity in differentiating between
healthy subjects and patients with DED.41,42 In addition, the
OSDI was able to effectively differentiate between mild to
moderate and severe DED.43 In our study, the OSDI scores
did not correlate with image-based subtypes (see Fig. 4).
This is consistent with previous studies that also failed to
find strong correlations between traditional objective clini-
cal measures of dry eye and patient symptoms.44,45 However,
this study also has limitations. We used only 280 detailed
ocular surface assessment data points to evaluate this new
classification obtained from AI. Another drawback is the
exclusive use of the OSDI to assess patient symptoms, with-
out considering other questionnaires like SPEED, poten-
tially influencing the outcomes. These 280 cases of patients
were relatively young and their clinical features were unable
to cover the population of patients with DED of all ages.
Presently, we are also in the process of amassing therapeu-
tic efficacy data for varied subtypes of patients, including
the cohort of 280 subjects discussed in this work. Moving
forward, we intend to investigate the therapeutic outcomes
across distinct subtypes to elucidate a paradigm of precise
diagnosis and tailored treatment for DED.

In conclusion, this study describes a SimCLR neural
network model for clustering meibography results into six

image-based subtypes. These six different subtypes are
correlated with BUT, TMH, MG dropout, meibum express-
ibility, meibum quality, and CFS. However, the integration
of AI in DED diagnosis faces challenges related to trust,
data security, and usability. Clinicians may harbor skepti-
cism toward AI systems that lack interpretability. Thus, both
explainable and secure AI models are crucial for gaining
clinical trust and widespread use. Usability is also essential,
especially when clinicians seek a simple “readout” for diag-
nosis.46,47 Addressing these multifaceted challenges is vital
for the successful application of AI in the DED diagnosis and
management.
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