
Artificial Intelligence

Fully Automated Segmentation of Human Eyeball Using
Three-Dimensional U-Net in T2 Magnetic Resonance
Imaging

Jin-Ju Yang1,2,*, Kyeong Ho Kim5,*, Jinwoo Hong4, Yeji Yeon1,2, Ji Young Lee6,
Won June Lee1,2, Yu Jeong Kim1,2, Jong-Min Lee3,‡, and HanWoong Lim1,2,‡

1 Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Korea
2 Hanyang Vision Research Center, Hanyang University, Seoul, Korea
3 Department of Biomedical Engineering, Hanyang University, Seoul, Korea
4 Department of Electronic Engineering, Hanyang University, Seoul, Korea
5 Department of Artificial Intelligence, Hanyang University, Seoul, Korea
6 Department of Radiology, Seoul St. Mary’s Hospital, Seoul, Korea

Correspondence: Han Woong Lim,
Department of Ophthalmology,
Hanyang University College of
Medicine, 222-1, Wangsimni-ro,
Seongdong-gu, Seoul 04763, Korea.
e-mail: limhw@nate.com
Jong-Min Lee, Department of
Biomedical Engineering, Hanyang
University, 222 Wangsimni-ro,
Sungdong-gu, Seoul 04763, Republic
of Korea. e-mail: ljm@hanyang.ac.kr

Received: December 29, 2022
Accepted: October 10, 2023
Published: November 17, 2023

Keywords: 3D U-Net; Deep
Learning; human eyeball; T2-MRI;
eyeball segmentation

Citation: Yang JJ, Kim KH, Hong J,
Yeon Y, Lee JY, Lee WJ, Kim YJ, Lee
JM, Lim HW. Fully automated
segmentation of human eyeball
using three-dimensional U-Net in T2
magnetic resonance imaging. Transl
Vis Sci Technol. 2023;12(11):22,
https://doi.org/10.1167/tvst.12.11.22

Purpose: To develop and validate a fully automated deep-learning-based tool for
segmentation of the human eyeball using a three-dimensional (3D) U-Net, compare its
performance to semiautomatic segmentation ground truth and a two-dimensional (2D)
U-Net, and analyze age and sexdifferences in eyeball volume, aswell as gaze-dependent
volume consistency in normal subjects.

Methods: We retrospectively collected 474 magnetic resonance imaging (MRI) scans,
including different gazing scans, from 119 patients. A 10-fold cross-validation was
applied to separate the dataset into training, test, and validation sets for both the 3D
U-Net and 2D U-Net. Performance accuracy was measured using four quantitative
metrics compared to the ground truth, and Bland–Altman plot analysis was conducted.
Age and sex differences in eyeball volume and variability in eyeball volume differences
across gazing directions were analyzed.

Results: The 3D U-Net outperformed the 2D U-Net with mean accuracy scores >0.95,
showingacceptable agreement in theBland–Altmanplot analysis despite a tendency for
slight overestimation (mean difference = −0.172 cm3). Significant sex differences and
age effects on eyeball volume were observed for both methods (P < 0.05). No signif-
icant volume differences were found between the segmentation methods or within
each method for the different gazing directions. Significant differences in performance
accuracy were identified among the five gazing directions, with the upward direction
showing a notably lower performance.

Conclusions: Our study demonstrated the effectiveness of 3D U-Net human eyeball
volume segmentationusing T2-weightedMRI. The robustness and reliability of 3DU-Net
across diverse populations andgaze directions support enhanced ophthalmic diagnosis
and treatment strategies.

Translational Relevance: Our findings demonstrate the feasibility of using the
proposed 3D U-Net model for the automatic segmentation of the human eyeball, with
potential applications in various ophthalmic research fields that require the analysis of
3D geometric eye globe shapes or eye movement detection.
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Introduction

The ocular globes, which comprise paired spher-
ical sensory organs located anteriorly on the face
within the orbit, house the visual apparatus.1 Numer-
ous studies analyzing ocular structures and measur-
ing ocular volumes have demonstrated the importance
of magnetic resonance imaging (MRI).2–7 Although
the structure of the human eyeball appears simple
because of its spherical shape, precise, robust, and
efficient measurements are required. Ocular segmenta-
tion forms the basis for further geometric and volumet-
ric evaluation of three-dimensional (3D) ocular struc-
tures.

In recent years, several conventional segmenta-
tion methods have been proposed for ocular struc-
ture analysis using MRI, primarily focusing on
ocular volume or shape analysis using T2-weighted
MRI.2–5,8,9 However, there is a lack of advanced
techniques, such as deep learning, for analyzing ocular
structures in nonpathological eyes, such as emmetropic
or ametropic eyes, and in pathological conditions.
The potential benefits of incorporating deep learn-
ing models, which have recently demonstrated promis-
ing results in ocular tumor segmentation,10,11 must be
explored for more comprehensive analyses of ocular
structures in various clinical scenarios.

The primary advantage of deep learning–based
segmentation is its ability to process large datasets
rapidly and provide robust results, which is often infea-
sible for manual segmentation, with manual presets
necessary for training data.12 Moreover, deep learning–
based segmentation can improve performance by
accommodating diverse variations in architecture and
using hybrid approaches that utilize state-of-the-art
deep-learning models.13 We opted for the 3D U-Net
model because it is better suited to spherical struc-
tures owing to its use of complete 3D spatial informa-
tion, rather than a two-dimensional (2D) architecture’s
approach.14–16 To compare the accuracy of the 3D
U-Net, we used a 2D U-Net with multi-view aggrega-
tion as our baseline model.17

This study aimed to develop a fully automated
segmentation tool for human eyeballs using a 3D
U-Net deep learning model on a large dataset and to
evaluate the segmentation performance. We retrospec-
tively collected 474 T2-weighted MRI scans encom-
passing various gaze scans from119 subjects. Addition-
ally, we investigated age and sex differences in eyeball
volume, as well as their variability across various gaze
directions, including central, lateral, medial, upward,
and downward gaze, in both the emmetropic and
ametropic eyes of normal subjects. Our proposed
method lays the groundwork for future studies requir-

ing the analysis of 3D geometric eye globe shapes or
eye movement detection, enabling its application in a
wide range of ophthalmic research.

Methods

Dataset

The MRI data used in this study were collected
retrospectively; further details on the data acquisition,
experimental setup, and demographics are described
in the literature.18–20 The dataset contained MRI
scans from 121 subjects, including 49 normal subjects,
39 high-myopia individuals with glaucoma, and 33
patients with strabismus, with varying gaze scans
(front, left, right, up, and down). Different gaze direc-
tions were achieved using markers within the MRI
equipment, positioned at 30° for horizontal movements
and 20° for vertical movements. The targets were
adjusted accordingly for patients with strabismus. Of
the initial 494 images, 20 scans were excluded for
the following reasons: seven scans had the eye region
cropped during the preprocessing stage (one strabis-
mus patient and one glaucoma patient), eight scans
from emmetropic eyes lacked data for gaze directions
other than the front gaze, and five scans were missing
from the dataset despite being acquired. Consequently,
474 images from 119 participants were used to develop
the deep learningmodel. A 10-fold cross-validationwas
used to split the data into training, validation, and test
sets.21 This study was approved by the Institutional
Review Board of Hanyang University Medical Center
and was conducted in accordance with the Declara-
tion of Helsinki. The requirement for informed consent
was waived owing to the retrospective nature of the
fully anonymized images. The code for deep learning
implementation can be accessed at (https://github.com/
hoya1212/eyeball-segmentation).

MRI Acquisition

High-resolution 3D T2-weighted images were
acquired using a 3T MRI scanner (Achieva; Philips
Medical Systems, Best, Netherlands) with a 32-channel
head coil. The image parameters included the follow-
ing: repetition time, 2500 ms; echo time, 248 ms; flip
angle, 90°; section thickness = 0.6 mm; field of view,
180 × 180 mm; matrix size, 256 × 256.

Preprocessing

MRI data were converted from DICOM to
NIfTI format using MRIcron software (https://
github.com/neurolabusc/MRIcron), and preprocessing
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was performed using FSL software (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki). Aligning images from different
gazing directions with front-gazing images allowed for
the inclusion of diverse gazing information within each
individual’s data, improving the training dataset and
promoting more accurate data processing and analysis.
To avoid high computational costs when training with
3D U-NET, the images were cropped to a consistent
input size of 256 × 130 × 90 before the training step,
localizing the region of interest while resampling by an
isovoxel.

Ground Truth

Manual delineation of the two eyeballs in slice-per-
slice 3DMRI is considered the ground truth; however,
it is labor-intensive and time-consuming. As an alter-
native, we adopted the widely used semiautomatic
segmentation tool ITK-SNAP (version 3.6.0, http://
itksnap.org), which encompasses the various medical
image segmentation methods.22 This semiautomatic
method serves as an efficient alternative to manual
segmentation, striking a balance between minimiz-
ing user intervention and maintaining the reliabil-
ity and appropriateness of our methodology for 3D
MRI. The benefits of semiautomatic segmentation
include reduced time consumption, minimized human
error compared tomanual segmentation, and improved
consistency between slices. Our primary focus is
on proposing a fully automated deep-learning-based
method that eliminates the need for researcher inter-
vention. An overview of these steps is provided in
Supplementary Figure S1. The process involves three
main steps: presegmentation by selecting an intensity
threshold, initializing a deformable object, and setting
the parameters for an active contour model. After the
semiautomatic segmentation process, wemanually fine-
tuned the results by adjusting the gray-level intensity
of the MRI data to binarize the hyperintense regions
of the eyeballs. The graphical user interface of the
tool allowed us to review and edit the segmentation of
the axial, sagittal, and coronal slices by adjusting the
gray intensity threshold for binarization. This manual
intervention was crucial for ensuring the precision of
the segmentation results, ultimately leading to accurate
identification of the ocular volume.

Deep Learning Model

Similar to the original U-Net, our 3D U-Net
consists of a contracting path and an expansive path,
which down-sample and up-sample the 3D input
image, respectively.14,15 To compare the accuracy of
the proposed 3D U-Net, we generated a 2D U-Net

with multi-view aggregation as the baseline method.17
It consists of fully connected CNNs operating on 2D
slices for coronal, axial, and sagittal views, followed by
a view-aggregation step to infer the final segmentation.
This model is simpler, adopts the canonical Dice loss
instead of the previously used hybrid Dice loss, and
excludes the test-time augmentation technique. The
details of our deep learning architecture are described
in the Supplementary Materials and a schematic illus-
tration is provided in Supplementary Figure S1. A
representative example of our 3D U-Net results and
the ground truth are shown in Figure 1. This figure
presents the original MRI, ground truth, and 3D U-
Net segmentation results from various perspectives.

Performance Evaluation

The deep learning output was compared with
the ground truth using four quantitative metrics
that are commonly used to validate medical volume
segmentation because of their reproducibility and
repeatability.23 These metrics include the following:
(1) Dice Similarity Coefficient, which evaluates the
spatial overlap between the predicted and ground truth
segmentations. A value of 1 indicates a perfect match,
whereas a value of 0 signifies no overlap. (2) Preci-
sion, also known as positive predictive value, measures
the proportion of true positive predictions within
the total predicted positive instances. High precision
indicates that the model accurately predicted positive
cases. (3) Recall, also referred to as sensitivity or true-
positive rate, calculates the proportion of true positive
predictions within actual positive instances. High recall
indicates that the model could detect most of the
positive cases. (4) Jaccard Similarity Index gauges the
similarity between two sets by calculating the intersec-
tion divided by the union of the predicted and ground-
truth segmentations.

Statistical Analyses

In the statistical analysis, we performed the χ2

test for categorical variables (such as sex) and the
Kruskal–Wallis test for continuous variables (such as
age and eyeball volume) to evaluate the differences
among the three groups. Dunn’s test was used for
post hoc multiple comparisons when significant differ-
ences were observed (P < 0.05). A general linear
model was used to analyze the association between
age and eyeball volume. A Bland–Altman plot was
used to assess the level of agreement between the
ground truth and 3D U-Net segmented volumes. Gaze
terms were categorized according to five different
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Figure 1. Human eyeball segmentation using 3DU-Net on T2-weightedMRI. (A–C) Original T2-weightedMRI, (D–F) ground truth segmen-
tation results, (G–I) 3D U-Net segmentation results, and (J–O) volume rendering for bothmethods. AnMRI fromGroup 1 data was randomly
selected and cropped around the eyeball center of the left eye. (A) Axial, (B) sagittal, and (C) coronal views of the original image. (D) Axial,
(E) sagittal, and (F) coronal views of the ground truth with a light blue color overlaid on the original T2-weighted MRI. (G) Axial, (H) sagit-
tal, and (I) coronal views of the 3D U-Net segmentation results with an orange color overlaid on the original T2-weighted MRI. Volume-
rendered eyeball for (J) axial, (K) sagittal (lateral), and (L) coronal (posterior) views of the ground truth. Volume-rendered eyeball for (M) axial,
(N) sagittal (lateral), and (O) coronal (posterior) views of the 3D U-Net.

directions: front, abduction, adduction, up, and down,
which encompassed both eyes of normal subjects. All
statistical analyses and visualizations were performed
using Python 3.7 (https://www.python.org/) in the
Jupyter Notebook environment (https://jupyter.org/).
The following Python packages were used for the
analysis and visualization: NumPy, pandas, scipy,
matplotlib, seaborn, and state models.

Results

Demographics and Characteristics of Study
Participants

The demographics and characteristics of the study
participants are presented in the Table. Statistically
significant differences in age were observed among
Groups 1, 2, and 3, whereas no significant differences

in sex were found. Eyeball volumes measured by the
ground truth, 3D U-Net, and 2D U-Net demonstrated
statistically significant differences between the three
groups, as well as between males and females. Because
of a lack of ophthalmic clinical information forGroups
2 and 3, the eyeball volume analysis results regarding
age, sex differences, and gaze direction were reported
only for Group 1.

Evaluation of Segmentation Performance

A performance evaluation was conducted on 948
eyes from all subjects, with both eyes included in the
test set optimized for the model parameters. Four
quantitative metrics were used in the assessment. The
3D U-Net outperformed the 2D U-Net across all
evaluation metrics, achieving average scores above 0.95
(Fig. 2A). A comparative analysis was performed based
on group (Fig. 2B) and gaze direction (Supplementary
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Table. Demographics and the Characteristics of Study Participants

Characteristic Total Group1 Group2 Group3 Statistics*

Number of subjects 119 49 32 38
Number of scans (missing) 474 245 (−13) 128 114
Number of eyes 948 464 256 228
Age 32.303 ± 12.521 30.163 ± 9.526 30.062 ± 17.031 36.947 ± 9.899 23.642† ,‡

Age range (min - max) 9–81 16–56 9–81 20–55
M/F, (Female ratio %) 69/50 (42%) 29/20 (41%) 19/13 (41%) 21/17 (45%) 0.170
Eyeball volume (cm3) for all eyes
Ground truth 9.887 ± 1.689 9.026 ± 1.350 10.447 ± 1.179 11.009 ± 1.863 260.200† ,§

3D U-Net 10.059 ± 1.684 9.085 ± 1.304 10.669 ± 1.091 11.356 ± 1.723 343.629† ,‡ ,§

2D U-Net 9.505 ± 1.350 9.241 ± 1.259 9.423 ± 1.120 10.154 ± 1.554 56.280† ,‡

Eyeball volume (cm3) for male eyes
Ground truth 10.147 ± 1.672 9.371 ± 1.309 10.641 ± 1.157 11.240 ± 2.026 136.158† ,§

3D U-Net 10.341 ± 1.645 9.438 ± 1.259 10.901 ± 1.011 11.627 ± 1.835 191.050† ,‡ ,§

Eyeball volume (cm3) for female eyes
Ground truth 9.524 ± 1.645 8.529 ± 1.249 10.163 ± 1.154 10.725 ± 1.594 141.975† ,§

3D U-Net 9.666 ± 1.660 8.574 ± 1.194 10.331 ± 1.114 11.021 ± 1.506 172.298† ,‡ ,§

F, female; M, male.
Continuous variables in each group are presented as themean± standard deviation, N, number of subjects, Group1, 2, and

3 represent normal subjects, patients with strabismus, and glaucoma.
*χ2 test for sex distribution among groups.
†Kruskal-Wallis test for continuous variables andmultiple comparisons using Dunn’s test: Group1 vs. Group 3 for significant

P < 0.05.
‡Kruskal-Wallis test for continuous variables andmultiple comparisons using Dunn’s test: Group 2 vs. Group 3 for significant

P < 0.05.
§Kruskal-Wallis test for continuous variables andmultiple comparisons using Dunn’s test: Group 1 vs. Group 2 for significant

P < 0.05.

Figure2. Comparisonof deep learningperformance evaluation. (A) Four evaluationmetrics, including theDice Similarity Coefficient (DSC),
Precision, Recall, and Jaccard Similarity Index (JSI), ranged from0 to 1, are plottedwith boxplots and individual data points for 3DU-Net (blue
points, N = 948 eyes from 474 MRIs) and 2D U-Net (light blue points, N = 942 eyes from 471 MRIs). (B) The same metrics are plotted only for
the 3D U-Net in each group (Group 1, blue; Group 2, orange; Group 3, green). On each box, the central redmark indicates themedian, and the
edges of the box represent the 25th and 75th percentiles.
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Figure 3. Bland-Altman plot for eyeball volume agreement between ground truth and 3D U-Net. The points with three colors for each
group (Group 1, blue; Group 2, orange; Group 3, green) represent the individual deviation of each volume compared to the ground truth
(N = 948 eyes). The central solid line indicates a mean difference of −0.172 cm3 (ground truth − 3D U-Net), and the dashed lines represent
the lower and upper limits of agreement (±1.96* Standard Deviation). The points above the upper limits accounted for 0.949% (nine eyes),
whereas those below the lower limits accounted for 2.426% (23 eyes).

Figure 4. Age and sex differences in eyeball volume. (A) The x-axis represents age, and the y-axis represents the eye volume by ground
truth. (B) The x-axis represents age, and the y-axis represents the eye volume by 3D U-Net. Scatter points are displayed in blue for males
and red for females, with least square lines and confidence interval for each group and combined group using a gray dotted line with the
confidence interval.

Fig. S2). Statistically significant differences were
observed for all metrics (Supplementary Table S1).

Bland-Altman Analysis

The Bland-Altman plot demonstrated a mean
difference (mean bias) of −0.172 cm3, indicating an
overestimation of the volume in the segmentation.
The lower and upper confidence interval lines were
positioned at −1.034 cm3 and 0.690 cm3, respec-
tively (Fig. 3). Points above the upper limit accounted

for 0.949% (N = 9 eyes: six in Group 1, two
in Group 2, and one in Group 3), whereas those
below the lower limit accounted for 2.426% (N = 23
eyes: four in Group 1, five in Group 2, and 14 in
Group 3).

Age and Sex Differences in Eyeball Volume

Age and sex differences in eyeball volume were
examined using ground truth and 3D U-Net data
from 98 emmetropic and ametropic eyes of 49 normal
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subjects with forward-gaze images (Fig. 4). Significant
sex differences in eyeball volumes were observed for
both the ground truth and the 3D U-Net, as summa-
rized in the Table. Ground truth showed average male
and female values of 9.277 ± 1.318 cm3 and 8.434 ±
1.206 cm3, respectively (t= 3.22,P< 0.05).Meanwhile,
3D U-Net revealed average male and female values of
9.439 ± 1.252 cm3 and 8.484 ± 1.183 cm3, respec-
tively (t = 782, P < 0.001). A significant age effect
on eyeball volume was found in both the ground truth
(t = −2.866, P < 0.05) and 3D U-Net (t = −3.188, P
< 0.05) after controlling for sex. However, no signif-
icant correlation between age and eyeball volume was
observed in themale group, whereas a significant corre-
lation was observed in the female group (ground truth:
r = −0.608, P < 0.001; 3D U-Net: r = −0.587,
P < 0.001).

Eyeball Volume Consistency Across Gaze
Directions

Gaze-dependent eyeball volumewas analyzed in 464
eyes, including emmetropic and ametropic eyes, from
49 normal subjects across five different gazing direc-
tions. No significant volume differences were observed
between the two segmentation methods for either gaze
direction, nor were there any significant volume differ-
ences with respect to the gaze direction within each
segmentationmethod.However, statistically significant
differences were found among the five gazing directions
in the performance evaluation metrics when compar-
ing the ground truth and 3D U-Net segmentation
(Supplementary Table S1). For a visual representation
of the volume analysis, please refer to Supplementary
Figure S2B.

Discussion

In this study, we developed a fully automated
segmentation tool based on a 3D U-Net model, and
evaluated its performance using a large dataset of
474 T2-weighted MRIs. Our results showed that 3D
U-Net outperformed 2D U-Net in terms of segmen-
tation performance across all evaluation metrics.
Moreover, we observed significant sex differences in
eyeball volume and an effect of age on eyeball volume,
consistent with previous literature.4 Our investigation
highlights the robustness of the 3D U-Net segmen-
tation method for different gaze directions, including
nonpathological eyes, such as emmetropic or ametropic
eyes, and pathological conditions.

We assessed the robustness and consistency of
eyeball volume estimation using the 3D U-Net method
across different gaze directions and explored the poten-
tial impact of gaze direction on segmentation perfor-
mance compared with a custom 2DU-Net using multi-
view aggregation. However, this approach did not
yield a significant improvement in this study, suggest-
ing that the multi-view method might not be optimal
because of missing connected voxels caused by eye-
motion artifacts. In contrast, 3D U-Net successfully
connected these voxels without creating fragments.
Our findings emphasize the importance of considering
gaze-direction variations when evaluating ocular struc-
tures and their impact on segmentation performance.
Despite the challenges in comparing our results with
those of previous studies, recent studies have reported
high accuracy using similar techniques.10,11 The clinical
applicability of the 3D U-Net approach was demon-
strated through a Bland–Altman plot analysis, which
revealed an acceptable level of agreement between the
ground truth and 3D U-Net predictions in terms of
eyeball volumes, even though the 3DU-Net exhibited a
tendency to slightly overestimate the total eye volume.

We detected significant differences among the
five gazing directions in the performance evalua-
tion metrics, indicating spatial overlap discrepancies
between the ground truth and the 3D U-Net segmen-
tation. Notably, the upward gazing direction showed a
significantly lower performance than the other direc-
tions in normal subjects (Group 1). A possible explana-
tion for this low spatial agreement in the vertical gaze
could be related to the range of eye movement.24,25
Previous studies have shown that vertical gaze ranges
are asymmetric, with the upward gaze being signifi-
cantly smaller than the downward gaze angle, whereas
horizontal gazes remained consistent. Maintaining a
specific gaze direction was challenging for participants
during scanning. In particular, upward gazing could be
uncomfortable owing to the restricted angle range of
eye movement, which may lead to movement artifacts
in MRIs.

This study has several limitations. First, instead of
using traditional manual segmentation for the ground
truth by drawing on a slice-by-slice basis, we opted for a
semiautomatic tool. Consequently, we could not evalu-
ate the intraobserver and interobserver variability of
the semiautomatic tool. The segmentation procedure
was performed carefully, and all MRIs were manually
inspected. Second, owing to the limited clinical infor-
mation available for the patient group, our eyeball
volume analysis of age, sex, and gazing direction was
restricted to normal subjects (Group 1). This limits the
generalizability of our findings to the patient group.
Third, despite using a large dataset from a single
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center and using 10-fold cross-validation to improve
generalizability, we did not conduct external validation.
Further research is needed to explore the utility of our
model in different contexts, such as different imaging
modalities and ocular conditions. In particular, multi-
class segmentation approaches incorporating both T1
and T2 images may improve the segmentation of the
cornea and vitreous humor by providing clearer infor-
mation on their boundary lines. By incorporating this
information into our method, we hope to expand its
applicability to situations requiring separate analyses
of these structures.

In conclusion, this study presents a pioneering
contribution to the field of human eyeball volume
segmentation by developing a fully automated tool
using a 3D U-Net for T2-weighted MRI. Our findings
demonstrate the robustness and reliability of 3D U-
Net across various gaze directions and diverse study
populations, including different age groups, pathologi-
cal patients, and normal subjects. An improved under-
standing of the impact of gaze direction on segmenta-
tion performance will enable researchers and clinicians
to better utilize segmentation approaches for a more
accurate and efficient assessment of the human eyeball,
ultimately leading to enhanced ophthalmic diagnoses
and treatment strategies. Future studies should focus
on refining the model and exploring its utility in differ-
ent contexts, such as different imaging modalities, and
the impact of various ocular conditions on model
performance.
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