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Purpose: The purpose of this study was to improve the automated diagnosis of glauco-
matous optic neuropathy (GON), we propose a generative adversarial network (GAN)
model that translates Optain images to Topcon images.

Methods: We trained the GAN model on 725 paired images from Topcon and Optain
cameras and externally validated it using an additional 843 paired images collected
from the Aravind Eye Hospital in India. An optic disc segmentation model was used to
assess the disparities in disc parameters across cameras. The performance of the trans-
lated images was evaluated using root mean square error (RMSE), peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM), 95% limits of agreement (LOA), Pearson’s
correlations, and Cohen’s Kappa coefficient. The evaluation compared the performance
of the GONmodel on Topcon photographs as a reference to that of Optain photographs
and GAN-translated photographs.

Results: The GAN model significantly reduced Optain false positive results for GON
diagnosis, with RMSE, PSNR, and SSIM of GAN images being 0.067, 14.31, and 0.64,
respectively, the mean difference of VCDR and cup-to-disc area ratio between Topcon
and GAN images being 0.03, 95% LOA ranging from −0.09 to 0.15 and −0.05 to 0.10.
Pearson correlation coefficients increased from 0.61 to 0.85 in VCDR and 0.70 to 0.89
in cup-to-disc area ratio, whereas Cohen’s Kappa improved from 0.32 to 0.60 after GAN
translation.

Conclusions: Image-to-image translation across cameras canbe achievedbyusingGAN
to solve the problem of disc overexposure in Optain cameras.

Translational Relevance:Our approach enhances the generalizability of deep learning
diagnostic models, ensuring their performance on cameras that are outside of the origi-
nal training data set.

Introduction

Glaucoma is a leading cause of blindness that
affects over 70 million people worldwide and continues

to grow.1–3 The disease originates from a state of high
intraocular pressures which subsequently precipitates
irreversible loss of retinal ganglion cells, optic nerve
degeneration, and visual field defects. Most people
with glaucoma have no obvious symptoms in the
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early stages,4 but without timely diagnosis and treat-
ment, irreversible vision loss is inevitable, making early
screening of great importance.5

Deep learning is an evolving area in ophthalmol-
ogy, where algorithms trained by fundus images have
revolutionized the prospects of automated diagnoses
for eye diseases.6–8 Studies have reported performance
of deep learning based on images from a variety of
camera models and it has been noticed that cross-
camera performance could limit the application of
these models9–11 owing to the nonidentical specifica-
tions of different camera brands.12–15 Most camera
brands, the images of which were used to train diagnos-
tic algorithms, are those most commonly used in
clinical practices, such as Topcon, Canon, Zeiss, and
Orburg, which are all large desktop models. Recently,
portable fundus cameras, such as Optain, have come
to the forefront, offering alternative approaches for
remote ophthalmic screening due to their light weight,
small size, and affordable pricing.16–21 Despite being a
portable camera, Optain generates overexposed images
within the optic disc region and it has not been specif-
ically trained for GON diagnosis.22 As the visibility of
the optic disk is critical in diagnosing GON, this limits
the diagnostic accuracy of deep learningmodels posing
a threat to the performance and uptake of Optain in
real-world settings.

Generative adversal networks (GANs) have been
proposed as a system to address this challenge by
improving cross-camera consistency. GANs consist
of two competing deep neural networks, a genera-
tor and a discriminator, which convert different illus-
tration formats interchangeably to facilitate image-to-
image conversion.23,24 The generator produces fake
data based on features, and the discriminator distin-
guishes the fake data from real examples. These
GAN structures have previously demonstrated good
performance in image-to-image translation tasks25,26
and could solve cross-camera performance discrep-
ancies for cameras using automated image analysis
algorithms.

This paper aims to propose a cross-camera domain
adaptation method to transform images captured by
portable cameras into images that closely resemble
those acquired by standard cameras used in clinical
practice.

Methods

Image Data

Patients aged 18 years or above who attended the
outpatient ophthalmic clinic at Guangdong Provin-

cial People’s Hospital were invited to participate in
this study. For every patient, two sets of fundus
photographs were captured by trained staff; one set
using a Topcon TRC-NW8 camera (field of view of
45 degrees) and the other using an Optain OPTFC01
camera (field of view of 50 degrees). We excluded
images when they were deemed of poor quality,
were considered ungradable by manual grading, or a
matching Optain/Topcon pair was missing. This study
protocol was approved by the Guangdong Provincial
People’s Hospital Institutional Review Board (KY-Q-
2021-032-01) and adhered to the tenets of the Declara-
tion of Helsinki. Informed consent was obtained from
all participants prior to recruiting them into the study.

External Data Set

We used a similar approach to gather paired fundus
images for external validation at Aravind Eye Hospi-
tal in Madurai, India. This part of the study was
approved by the Aravind Eye Hospital Institutional
Review Board and adhered to the tenets of the Decla-
ration of Helsinki. A total of 843 pairs of Topcon
and Optain fundus images were collected and included
images of participants with diabetic retinopathy (DR),
glaucoma, and those with no retinal pathology.

Image-to-Image Translation

First, we extracted vessels from the paired data
obtained with the Topcon and Optain cameras to
generate vessel maps using the Retina-basedMicrovas-
cular Health Assessment System (RMHAS),27 which
is a U-net-based retinal artery/vein/optic disc segmen-
tation and measurement system. We conducted regis-
tration of fundus images by utilizing the AKAZE key
point detector to detect key points from the corre-
sponding vessel map, followed by using the Nearest-
Neighbor-Distance-Ratio for feature-matching and
random sample consensus (RANSAC)28 to generate
homography matrices and to reject outliers (examples
of image registration are shown in Supplementary Fig.
S1). A validity restriction was added: the rotation scale
was restricted to a range of 0.8 to 1.3, and the absolute
rotation in radians was limited to less than 4, before
applying the warping transformation. Poor registration
pairs were filtered out based on a threshold value that
was empirically set using the data set. Moreover, we
excluded image pairs with inferior registration perfor-
mance, specifically those with a Dice coefficient below
0.5. The threshold value was established empirically,
using the data set used in our experiments.

In this study, we utilized pix2pixHD,26 an advanced
conditional GAN incorporating a multiscale discrim-
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inator and residual blocks, for performing high-
resolution image-to-image translations in the context
of cross-camera scenarios. The algorithm works by
training a generator network and a discriminator
network simultaneously. The generator network takes
an input image and tries to generate a photorealis-
tic output image that is similar to the target image.
The discriminator network, on the other hand, tries
to differentiate between the real target image and the
generated output image, providing feedback to the
generator about how to improve its output. The paired
photographs recruited from Guangdong Provincial
People’s Hospital were randomly divided into train-
ing set, validation set, and test set at an 8:1:1 ratio at
the patient level. Optain fundus images were used as
input, whereas Topcon fundus images were utilized as
the target labels for GAN training. Through iterations
of training, the generator learns to produce increas-
ingly realistic synthetic data, whereas the discriminator
learns to better distinguish between real and synthetic
data. This iterative process was continued until the
generator reached an optimal game equilibrium, result-
ing in a final GAN model that produced translated
images closest to real Topcon fundus color images.
Examples of paired fundus images taken by Topcon
and Optain cameras and GAN translated results are
shown in Supplementary Figure S2.

GONModel

In this study, a previously developed deep learn-
ing model for glaucomatous optic neuropathy (GON)
screening was utilized. The algorithm was extensively
described in a previous study,29 wherein it was trained
using over 200,000 fundus photographs obtained from
various ophthalmic clinics and institutions in China,
using different fundus camera models, such as Topcon,
Canon, Heidelberg, and Digital Retinography System.
The data were stored on a web-based cloud resource
platform (www.labelme.org). The deep learning model
was developed using the Inception version 3 architec-
ture and included disease classification, image quality
assessment, and macular region detection. The GON
model classified all images as “low risk,” “medium
risk,” or “high risk.” A false positive diagnosis occurs
when the Topcon image predicts a low risk, whereas the
Optain image predicts a moderate to high risk.

Disc-CupMeasurement

A previously validated deep learning model for disc-
cup segmentation was used for optic disc parameter
generation and its development is described elsewhere
(doi: https://doi.org/10.1101/2023.11.06.23298106). In
brief, we used pix2pixHD to achieve disc and cup

segmentation.23 The images were first cropped to
ensure that only the field of view was included before
being input into the model. The batch size was 4 and
the learning rate was 0.0002. Each training epoch had
a total of 100 and themodel with the highestDice index
on the validation set was selected.

The vertical cup-to-disc ratio (VCDR) was
computed by dividing the vertical diameter of the
cup by the vertical diameter of the disc on the vertical
line. Both disc area and cup area were measured in
pixels. The cup-to-disc area ratio was defined as the
ratio of the cup area to the disc area.

Evaluation Metrics

Toprovide objective evidence for the accuracy of the
translated images, we conducted a quantitative evalu-
ation based on two widely used metrics: the struc-
tural similarity index (SSIM) and the peak signal-to-
noise ratio (PSNR).30 SSIM measures the similarity
in structural information between two images, with a
value of 1 indicating perfect similarity and 0 indicating
no similarity. PSNR, on the other hand, measures the
quality of an image in terms of the difference between
corresponding pixels, with a higher value indicating
less distortion. Additionally, we used the root mean
square error (RMSE) index to assess the agreement of
optic disc parameters between Topcon and translated
images. RMSE measures the degree of variation per
pixel due to image processing, with a value closer to 0
indicating greater similarity between the images.

We calculated the mean difference in VCDR and
cup-to-disc area ratio for the Topcon and Optain
cameras, as well as for the Topcon and GAN-
transformed images. To assess the agreement of optic
disc parameters between these camera types, we calcu-
lated the 95% limits of agreement (LOA), defined as
the mean difference ± 1.96 times the standard devia-
tion (SD). Furthermore, we used the interclass corre-
lation coefficient (ICC) to compare the agreement of
optic disc parameters between Topcon and Optain,
and between Topcon andGAN-translated images. ICC
values range from 0 to 1, with 0 indicating no relia-
bility and 1 indicating perfect reliability. Additionally,
we examined the strength of association between optic
disc parameters obtained with the two cameras using
a Pearson’s correlation test, denoted by correlation
coefficients Ra and Rb for the Topcon and Optain
cameras, respectively.

Metrics including exact agreement (%) and Cohen’s
Kappa coefficient (and its associated P value) were
used for the consistency analyses. The evaluation
was conducted by comparing the model’s perfor-
mance on Topcon photographs as a reference to
that of Optain photographs and GAN-translated
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photographs. Cohen’s Kappa coefficient ranges from
−1 to 1, and is commonly interpreted as follows: 0.40
to 0.60 as moderate, 0.60 to 0.80 as substantial, and
0.80 to 1.00 as almost in perfect agreement. Statisti-
cal analyses were conducted using Stata version 15.0
software (StataCorp, College Station, TX, USA) and
Python version 3.6.

Results

We recruited a total of 485 patients and then we
excluded 189 Topcon-Optain pairs of images from
model development due to registration failure caused
by low image quality. A workflow of the inclu-
sion/exclusion process for images is illustrated inFigure
1. An example of fundus photographs taken by Topcon
and Optain and the translated output by GAN model
are available in Figure 2. For the same eye, fundus
images taken from the Optain camera appear overex-

posed in the optic disc region compared with Topcon
images, and this was improved by translation via the
GAN model.

The confusion matrix depicting the performance of
the GON model on paired external data is presented
in Figure 3. Specifically, Figure 3A illustrates the GON
model’s performance on Topcon and Optain, reveal-
ing a high number of false positive diagnosis (n =
99). To address the issue of disc overexposure, we
used the GAN model to translate the false positive
diagnosis and evaluated their performance with the
GON model. The resulting confusion matrix between
the transformed images and Topcon is displayed
in Figure 3B. The findings indicate that theGAN trans-
formed images exhibit considerably fewer false positive
diagnoses (n = 8) compared to the original Optain
images. The GAN translated images achieved a PSNR
of 14.31 and an SSIM of 0.64, indicating moderate
similarity with the Topcon images. The RMSE value
of the translated images was 0.067, reflecting a small
amount of variation per pixel due to processing.

Figure 1. Workflow of the study.

Figure 2. Examples of paired fundus images taken by Topcon and Optain cameras and GAN translated result.

Downloaded from iovs.arvojournals.org on 04/25/2024



Camera Translation Improves Glaucoma Diagnosis TVST | December 2023 | Vol. 12 | No. 12 | Article 20 | 5

Figure 3. Confusion matrix of GONmodel performance.

Table 1. Vertical Cup-to-Disc Ratio of Topcon Photos as Reference Compared With Optain Photos and Photos
Translated by GAN

VCDR

843 Pairs Mean (SD) Mean Difference Compare With Topcon 95% LOA ICC R P Value

Topcon 0.47 (0.13) — — — — —
Optain 0.54 (0.11) −0.07 −0.23 to 0.08 0.75 0.61 <0.001a

GAN translated 0.43 (0.12) 0.03 −0.09 to 0.15 0.83 0.85 0.007b

ICC, interclass correlation coefficient; LOA, limits of agreement.
aThe P value of VCDR measured by Topcon and Optain calculated from paired t-test.
bThe P value of VCDR measured by Topcon and GAN translation calculated from paired t-test.
R, Pearson’s correlation between Topcon and Optain/GAN translation.

Table 2. Cup-To-Disc Area Ratio of Topcon Photos as Reference ComparedWith Optain Photos and Photos Trans-
lated by GAN

Cup-to-Disc Area Ratio

843 Pairs Mean Mean Difference Compare With Topcon 95% LOA ICC R P Value

Topcon 0.25 (0.11) — — — — —
Optain 0.31 (0.11) −0.07 −0.21 to 0.06 0.79 0.70 <0.001a

GAN translated 0.19 (0.08) 0.03 −0.05 to 0.10 0.89 0.89 <0.001b

ICC, interclass correlation coefficient; LOA, limits of agreement.
aThe P value of cup-to-disc area ratio measured by Topcon and Optain calculated from paired t-test.
bThe P value of cup-to-disc area ratio measured by Topcon and GAN translation calculated from paired t-test.
R, Pearson’s correlation between Topcon and Optain/GAN translation.

Tables 1 and 2 separately present a comparison
of optic disc parameters between different cameras
and the translated output generated by our model.
The mean difference between Topcon and Optain
cameras for both VCDR and cup-to-disc area ratio
was −0.07, with 95% limits of agreement ranging
from −0.23 to 0.08, and −0.21 to 0.06, respec-
tively. On the other hand, the mean difference

between Topcon and GAN transformed images for
both VCDR and cup-to-disc area ratio was 0.03,
with 95% limits of agreement ranging from −0.09
to 0.15 and −0.05 to 0.10, respectively. After the
GAN translation, the Pearson correlation coefficients
compared to Topcon increased from 0.61 to 0.85 in
VCDR and from 0.70 to 0.89 in cup-to-disc area
ratio.
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Table 3. Agreement of Deep Learning Performance
by Using Topcon Photographs as Reference Compared
With Optain Photographs and Photographs Translated
by GAN

GONModel
Cohen’s
Kappa

Agreement
(%) P Value

Optain 0.32 84.93% <0.001
GAN translated 0.60 95.02% <0.001

GON, glaucomatous optic neuropathy.
Inter-rater reliability as measured by exact agreement (%)

and Cohen’s Kappa coefficient (and its associated P value) for
GONmodel.

Table 3 lists the agreement and Cohen’s linearly
weighted kappa (κw) of GON model performances
with Topcon photographs as reference. Notably,
the consistency performance of the GON model
improved significantly after GAN translation. The κw
value increased from 0.32 to 0.60 when comparing
Optain and GAN-translated photographs, indicating a
substantial improvement in agreement.

Discussion

This study was successful in demonstrating that
Optain fundus images can be translated to a format
similar to that of Topcon, and this can overcome the
current limitations of portable fundus cameras for
glaucoma diagnosis. Despite being different from the
East Asian ethnic data used in the training set, our
GAN model performed well on the external validation
set. GAN networks improved false positive diagno-
sis GON images taken by portable Optain cameras,
by altering images around the optic disc region in
Optain photographs. This made them more similar to
Topcon-derived fundi evidenced by PSNR, SSIM, and
RMSE, thereby allowing diagnostic algorithms tomore
accurately diagnose GON.

The convenience of portable, handheld fundus
cameras has improved prospects for remote ophthalmic
examinations in recent years.17,31–35 However, image
properties differ between fundus cameras, which may
affect the performance of deep learning models that
automatically diagnose GON from these images. In
this study, Optain cameras appeared to overexpose
the optic disc region, resulting in variability of disc
segmentation compared with that of Topcon cameras.
Hence, we applied GANs to resolve cross-camera
discrepancies. Given that the optic nerve is the primary
site of glaucomatous changes, such inconsistencies due
to camera properties would raise doubts about the

reliability of modern portable fundus cameras. There-
fore, it is crucial to convert color fundus photographs
obtained by portable fundus cameras into results
comparable to those of standard clinical cameras to
ensure the generalization and reliability of portable
cameras in real-world applications and their integra-
tion into existing care delivery models.36,37

GANs have the potential to facilitate the cross-
camera image synthesis through feature extraction and
data augmentation which are translated to a camera
based on another. However, this method has seldom
been explored to bridge the cross-camera domain gap
dilemma for GON diagnosis.38,39 Although GANs
have become popular tools in retinal imaging for
the improvement of image quality and synthesis of
imaging findings,40,41 their use for cross-camera image
translation is yet to be explored. Our study presents
itself as the first step to ensuring the use of portable
fundus cameras without the need for retraining and
validation of a new algorithm across camera models.
Therefore, the potential of applications of GANs for
this method are exponential and could be applied to
other cross-camera diagnostic algorithms, including for
age-related macular degeneration and DR. Applica-
tion of similar techniques to different diagnostic frame-
works should be explored in future studies to ensure
diagnostic consistency and thereby giving portable
fundus cameras the highest chance of success as a
tool to enhance screening of posterior segment condi-
tions in general practices as well as in rural outreach
programs.

This study harnessed a novel design based onGANs
to allow for image-to-image translation across camera
models, that can enhance the acceptability of deep
learning algorithms in ophthalmology and the use of
portable fundus cameras in general and rural practice.
Despite the novelty of the method and these findings,
this study has several limitations that need to be
addressed. First, images from the Optain camera were
not added to the training set of the GON model to
compare the performance of the fine-tuned model with
the approach presented in this paper. Second, our study
only focuses on reducing the issue of false positive
diagnoses in the GON model caused by disc overex-
posure in the Optain camera, and the cause of false
negative diagnoses in the model has not been explored.
Third, although the transformed images yielded good
results when tested on the GON model, it is necessary
to conduct further research in order to apply GANs
to other types of cameras and explore their efficacy in
other models used for various ophthalmic issues. It is
worth noting that, despite not including task-specific
transformations in this study, the proposed method
still exhibited effectiveness. Moving forward, there is
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potential for task optimization, such as using optic disc
parameter-guided translation or other purpose-guided
translation, to further enhance the performance of the
method.

Conclusions

This study validated a cross-camera domain adapta-
tion method to convert Optain portable fundus images
to Topcon-like images, resulting in better consistency
between cameras and their evaluation parameters. For
cameras with fixed illumination issues, this method
provides a novel solution to convert images across
cameras, and may help optimize the range of camera
models applied to diagnostic deep learning models in
ophthalmology.
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