Supplementary Figure 1

To discard possible alterations or inflammatory processes in the cornea after PDGF administration, two sets of additional experiments were performed:

a) A biomicroscope study plus and a specular microscope analysis of corneas before and after PDGF application.

When PDGF was topically applied to the rabbit ocular surface, no apparent change in corneal aspect, corneal thickness and corneal transparency was observed.

Concerning the general aspect of the eye, neither redness nor oedema was apparently detected when the eyes were observed under the biomicroscope before and after the application of PDGF.

Also corneal thickness was measured before and after the application of the growth factor with no apparent changes neither in thickness (possible oedema) or cells morphology (hexagonality).

(R, means right eye, 2028 is the reference number for the animal; T is thickness in mm)
Concerning corneal transparency a corneal section by means of the biomicroscope (slit lamp) did not show any apparent change in the corneal transparency.

![Before PDGF vs After PDGF](image)

b) An histological study of the cornea before and after the application of PDGF.

Rabbits were treated with saline or PDGF, and sacrificed two hours after the application of the growth factor or the vehicle. Corneas were taken for anatomical analysis. Corneas were visualized with DAPI (in blue) and to investigate possible changes in the epithelial cells physiology were also labelled them with the antibody against the P2Y₂ receptor (in green). As it can be observed in the pictures below, no changes were appreciated. Corneas after the treatment with PDGF were virtually identical to those treated with saline. Also the presence of P2Y₂ receptors on the most superficial layer of the corneal epithelium remained almost unchanged.
In summary, there were no differences between treated and non-treated corneas. Any inflammatory process it must be "subclinical", since we were unable to detect any change in this ocular structure. If so, some mediators could be released from epithelial, stromal and/or endothelial cells that may in some way reach the trabecular meshwork to produce changes in its physiology.