A PCA is a data-driven procedure used to reduce a multivariate complex dataset into a smaller set of uncorrelated variables, called principal component (PC). Our PCA explored the SAKURA visual outcome dataset to identify the principal dimensions of visual functioning. The PCA transforms the large number of VFQ-25 scores to a new coordinate system such that the new set of PCs are linear functions of the original variables, and are ordered in a way that the first PCs contain most of the variation of the original dataset.
Figure S2: PCA output – Correlation between PC1 and various VFR measures

- X-axis (left to right): The first 26 bars represent the 25 individual VFQ-25 items, in addition to the single item General Health. The last 11 bars represent the 11 subscales derived from the VFQ-25 items. The composite score is a weighted average of the 25 VFQ-25 items. Y-axis represents the degree of correlation between the visual function measures on the X-axis and PC1.

- Correlation coefficient values range from 0.00 to 1.00.
Figure S3A-B: PCA output – Loadings of VFQ-25 Items on PC2 and PC3

X-axis: bars represent weight of the 23 individual VFQ-25 items, in addition to the single item General Health. The 3 driving items were marked by a large number of missing values and were therefore not included in the original PCA. Y-axis represents the loading (weight) of each item in constructing the PC, and can take a positive or negative value.