Differential Optical Densities of Intraretinal Spaces

Daniel Barthelmes,1,2 Florian K. P. Sutter,3 and Mark C. Gillies4

PURPOSE. To test the hypothesis that hyporeflective spaces in the neuroretina found on optical coherence tomography (OCT) examination have different optical reflectivities according to whether they are associated with exudation or degeneration.

METHODS. Retrospective analysis of eyes with idiopathic perifoveal telangiectasia (IPT), diabetic macular edema (DME), idiopathic central serous chorioretinopathy (CSC), retinitis pigmentosa (RP), or cone dystrophy (CD) and eyes of healthy control subjects. OCT scans were performed. Raw scan data were exported and used to calculate light reflectivity profiles. Reflectivity data were acquired by projecting three rectangular boxes, each 50 pixels long and 5 pixels wide, into the intraretinal cystoid spaces, centrally onto unaffected peripheral RPE, and onto the prefoveal vitreous. Light reflectivity in the retinal pigment epithelium (RPE), vitreous, and intraretinal spaces for the different retinal conditions and control subjects were compared.

RESULTS. Reflectivities of the vitreous and the RPE were similar among the groups. Hyporeflective spaces in eyes with exudation (DME, RP, and CSC) had higher reflectivity compared with the mean reflectivity of the vitreous, whereas the cystoid spaces in the maculae of the eyes without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous.

CONCLUSIONS. Analysis of the light reflectivity profiles may be a tool to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous, and may be a way to differentiate degenerative from exudative macular disease.

Investigative Ophthalmology & Visual Science, August 2008, Vol. 49, No. 8 DOI:10.1167/iovs.07-1320

From the Departments of 1Ophthalmology and 2Intensive Care Medicine, Bern University Hospital and University of Bern, Bern, Switzerland; the 3Department of Ophthalmology, University Hospital Zurich, Zurich, Switzerland; and the 4Save Sight Institute, Department of Clinical Ophthalmology and Eye Health, University of Sydney, Sydney, Australia.

Supported by a grant from the Lowy Medical Research Foundation.

Submitted for publication October 12, 2007; revised December 2, 2007, and January 28, 2008; accepted June 9, 2008.

Disclosure: D. Barthelmes, None; F.K.P. Sutter, None; M.C. Gillies, None

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Daniel Barthelmes, Department of Ophthalmology, Bern University Hospital, Inselspital, CH-3010 Bern, Switzerland; daniel.barthelmes@gmx.ch.
Quantitative OCT Analysis

OCT scanning was performed (Stratus OCT, software ver. 4.01; Carl Zeiss Meditec AG, Oberkochen, Germany) with the built-in macular thickness scanning program, consisting of six radially arranged scan lines, each 6 mm long, 30° apart, and centered in the foveola. All OCT recordings were performed under the same conditions.

Only scans with excellent quality (quality factor, 9 or 10) were used. For quantitative analysis, unprocessed raw scan data were exported from the OCT machine. Interpreting the raw scan data as 32-bit gray-scale images resulted in 4096 levels of gray, ranging from 0 to 4095. Light reflection profiles (LRP) for each image were calculated for each OCT image (IGOR 5.05a; Wave metrics Inc., Lake Oswego, OR).12 Reflectivity data were acquired by placing three rectangular boxes, each 50 pixels long and 5 pixels wide, into the cystoid spaces, centrally onto unaffected peripheral RPE, and in the prefoveolar vitreous, by using the built-in image line profile procedure (Fig. 1). Instead of analyzing single data points, which can have rather high or low reflectivity values, we calculated the mean reflectivity of 250 data points from every area measured (RPE, vitreous, and cystoid space) in every eye. Details are given in Table 1. Because raw data were used, reflectivity was expressed in arbitrary units (AU) according to the reflectivity values instead of decibels.

Statistical Analysis

Statistical analysis was performed with commercial software (Statistica 6, StatSoft Inc., Tulsa, OK). One-way analysis of variance (ANOVA) was used to test for differences between the different groups, including post hoc testing. Statistical significance was prospectively defined as $P < 0.05$. Because of the low number of patients with intraretinal spaces in the CD group, the data from this group were not included in the ANOVA. For evaluation, the data from the CD group were plotted against normal values.

RESULTS

Hyporeflective Spaces in Type II IPT and CD

Hyporeflective intraretinal spaces were found in 17 of 28 eyes with type II IPT and were similar to those previously described (Fig. 2).10,15 We identified 42 patients with CD. For three of these patients, cystoid spaces were found in both eyes.

Hyporeflective Spaces in DME and CSC

Figure 2 shows typical cross-sectional OCT studies through the central macula of eyes with RP, CSC, and DME.

Quantitative OCT Analysis of Intraretinal Hyporeflective Spaces

Mean reflectivities of the RPE, vitreous, and intraretinal spaces for each eye and each condition are shown in Table 1. The mean optical reflectivities of the vitreous and the RPE were similar for all groups tested (Fig. 3). The mean optical reflectivity of hyporeflective spaces in eyes with intraretinal spaces due to exudation (DME, RP, and CSC) was higher than that of the vitreous, whereas that of the eyes with intraretinal spaces without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous. The pooled data from IPT show a significantly lower reflectivity of the intraretinal spaces compared with the pooled reflectivity data from DME, CSC, and RP (Fig. 3).

This difference between the reflectivity of hyporeflective spaces in both groups persisted, even when the data from the group with CSC, which had the highest optical reflectivity, were removed (Fig. 3). In the group with exudative origin of the intraretinal spaces, each eye examined had a higher reflectivity within the intraretinal cavities compared with the reflectivity of the vitreous, whereas in the group without exudation, all intraretinal cavities had lower reflectivity than did the vitreous in each eye (Table 1).

An interesting finding was the presence of intraretinal spaces, not related to exudation, in patients with CD. A short description of each patient follows.

Case 1

A 53-year-old female presented with photophobia and visual acuity (VA) of 20/50 in both eyes. Clinical examination showed central atrophy and pigment changes. Ganzfeld ERG showed reduced cone-driven responses and normal rod-driven responses. OCT examination revealed significant central macular thinning and intraretinal spaces identical with those seen in type II IPT (Fig. 4).

Case 2

A 22-year-old female presented with VA of 20/200 in both eyes. A broadened foveal reflex with fine central pigment mottling but no other abnormalities was found on fundus examination.
Ganzfeld-ERG showed normal rod-driven responses. Cone-driven responses in single-flash stimulation were slightly subnormal, but testing with 30-Hz flicker stimulation revealed a significant reduction of b-wave amplitude and a dramatic increase in implicit time in both eyes. OCT revealed an outer retinal cystoid space in the central foveola. Fluorescein angiography did not show any leakage but identified a small window defect (Fig. 4).

Table 1. Reflectivity in Each Eye in Each Region

<table>
<thead>
<tr>
<th>Group</th>
<th>Region Tested</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>RPE</td>
<td>2215.7 ± 195.7</td>
<td>2211.6 ± 189.6</td>
<td>2153.24 ± 199.02</td>
<td>2194.83 ± 183.15</td>
<td>2281.87 ± 225.4</td>
<td>2166.44 ± 206.82</td>
</tr>
<tr>
<td></td>
<td>Vitreous</td>
<td>966.86 ± 59.32</td>
<td>969.46 ± 66.08</td>
<td>964.46 ± 60.8</td>
<td>970.87 ± 62.25</td>
<td>969.85 ± 85.71</td>
<td>964.89 ± 64.44</td>
</tr>
<tr>
<td></td>
<td>Cystoid space</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>CSC</td>
<td>RPE</td>
<td>2226.3 ± 213.7</td>
<td>2219.58 ± 177.83</td>
<td>2215.78 ± 208.4</td>
<td>2236.07 ± 212.05</td>
<td>2076.91 ± 235.05</td>
<td>2110.17 ± 219.88</td>
</tr>
<tr>
<td></td>
<td>Vitreous</td>
<td>968.4 ± 66.98</td>
<td>962.5 ± 83.32</td>
<td>960.5 ± 41.64</td>
<td>965.06 ± 41.16</td>
<td>971.42 ± 46.27</td>
<td>974.22 ± 62.83</td>
</tr>
<tr>
<td></td>
<td>Cystoid space</td>
<td>1009.79 ± 69.84</td>
<td>1016.38 ± 80.56</td>
<td>996.27 ± 52.33</td>
<td>997.8 ± 51.86</td>
<td>993.49 ± 48.04</td>
<td>1030.46 ± 89.15</td>
</tr>
<tr>
<td>DME</td>
<td>RPE</td>
<td>2097.32 ± 256.29</td>
<td>2047.41 ± 216.15</td>
<td>2131.45 ± 206.9</td>
<td>2221.72 ± 205.31</td>
<td>2239.83 ± 276.41</td>
<td>2356.29 ± 297.03</td>
</tr>
<tr>
<td></td>
<td>Vitreous</td>
<td>965.95 ± 55.64</td>
<td>967.36 ± 50.95</td>
<td>964.94 ± 56.71</td>
<td>970.05 ± 64.63</td>
<td>968.91 ± 56.16</td>
<td>962.37 ± 57.69</td>
</tr>
<tr>
<td></td>
<td>Cystoid space</td>
<td>968.18 ± 62.88</td>
<td>969.06 ± 58.66</td>
<td>970.6 ± 58.31</td>
<td>982.13 ± 59.98</td>
<td>989.75 ± 56.93</td>
<td>964.89 ± 56.64</td>
</tr>
<tr>
<td>IPT</td>
<td>RPE</td>
<td>2217.15 ± 163.55</td>
<td>2205.68 ± 176.97</td>
<td>2216.87 ± 215.69</td>
<td>2231.14 ± 238.78</td>
<td>2176.53 ± 244.95</td>
<td>2052.77 ± 199.01</td>
</tr>
<tr>
<td></td>
<td>Vitreous</td>
<td>963.23 ± 49.3</td>
<td>952.69 ± 53.68</td>
<td>968.17 ± 78.01</td>
<td>987.82 ± 72.95</td>
<td>996.11 ± 75.15</td>
<td>979.28 ± 90.22</td>
</tr>
<tr>
<td></td>
<td>Cystoid space</td>
<td>940.04 ± 60.97</td>
<td>952.49 ± 62.35</td>
<td>969.28 ± 57.67</td>
<td>936.05 ± 57.78</td>
<td>938.68 ± 48.73</td>
<td>961.99 ± 59.01</td>
</tr>
<tr>
<td>RP</td>
<td>RPE</td>
<td>2149.52 ± 245.88</td>
<td>2254.85 ± 219.34</td>
<td>2153.15 ± 231.53</td>
<td>2192.57 ± 210.23</td>
<td>2114.88 ± 226.17</td>
<td>2202.47 ± 212.48</td>
</tr>
<tr>
<td></td>
<td>Vitreous</td>
<td>968.65 ± 49.76</td>
<td>965.36 ± 56.32</td>
<td>962.26 ± 55.72</td>
<td>962.39 ± 57.91</td>
<td>970.5 ± 52.65</td>
<td>971.65 ± 61.66</td>
</tr>
<tr>
<td></td>
<td>Cystoid space</td>
<td>971.69 ± 54.78</td>
<td>967.18 ± 54.51</td>
<td>975.58 ± 57.47</td>
<td>981.27 ± 54.08</td>
<td>975.89 ± 54.5</td>
<td>979.84 ± 59.19</td>
</tr>
<tr>
<td>CD</td>
<td>RPE</td>
<td>2179.57 ± 162.57</td>
<td>2206.38 ± 235.82</td>
<td>2183.48 ± 287.08</td>
<td>2183.48 ± 287.08</td>
<td>2183.48 ± 287.08</td>
<td>2183.48 ± 287.08</td>
</tr>
<tr>
<td></td>
<td>Vitreous</td>
<td>967.38 ± 70.09</td>
<td>967.17 ± 81.42</td>
<td>969.05 ± 57.96</td>
<td>969.05 ± 57.96</td>
<td>969.05 ± 57.96</td>
<td>969.05 ± 57.96</td>
</tr>
<tr>
<td></td>
<td>Cystoid space</td>
<td>940.43 ± 50.55</td>
<td>958.09 ± 79.95</td>
<td>961.43 ± 87.99</td>
<td>961.43 ± 87.99</td>
<td>961.43 ± 87.99</td>
<td>961.43 ± 87.99</td>
</tr>
</tbody>
</table>

Reflectivity data are expressed as the mean AU ± SD.

Figure 2. Representative pseudo-color cross-sectional OCT images of the different maculopathies and a control subject are shown. The images were processed by OCT Stratus software (Carl Zeiss Meditec, AH, Oberkochen, Germany) and were exported as JPEG images. IPT represents a scan through an inner retinal cystoid space in an affected eye. Cases 1, 2, and 3 (CD) represent OCT scans through an inner cystoid space (case 1) and outer retinal cystoid spaces (cases 2 and 3) in patients with CD. A case of a macular edema secondary to RP is shown in the top right panel, and a DME in the panel immediately below. CSC represents a typical OCT scan through a focal neurosensory retinal detachment secondary to idiopathic CSC. **Bottom right:** a control subject’s OCT scan.
Case 3

A 21-year-old male presented with progressive loss of visual acuity (20/60 in both eyes). Some pigment epithelial changes were visible in the central macula in both eyes. Fluorescein angiography showed a window defect but no leakage, consistent with attenuation of the RPE.

OCT revealed outer retinal cystoid spaces in the central macula of both eyes. Ganzfeld ERG revealed normal rod-driven responses and significantly reduced cone-driven amplitudes in both single flash and 30-Hz flicker stimulation. Implicit times were abnormally increased under both conditions.

DISCUSSION

By quantitatively analyzing light reflectivity profiles from OCT studies, we have demonstrated that retinal hyporeflective spaces in IPT and CD—conditions in which cysts occur without exudation—consistently have lower optical reflectivity than do spaces occurring in conditions associated with exudation. That exudative retinal cysts, for example in AMD, eventually subside in eyes with exudative maculopathy. Also, the three values from the three patients with CD were below the average in normal vitreous. (D) Mean pooled reflectivity of cystoid spaces in IPT was significantly less than that of spaces in the exudative maculopathies (DME, CSC, RP; mean ± SD, 954.6 ± 64.3 vs. 989.6 ± 65.4 AU P < 0.0001). When the data from the CSC group were removed from exudative maculopathies, the comparison between nonexudative and exudative intraretinal cavities still showed a significantly higher reflectivity (954.6 ± 64.3 vs. 972.8 ± 57.7 AU, #P < 0.001) for exudative cystoid spaces. The three CD patients showed much lower reflectivity than did patients with exudation-associated intraretinal spaces.

FIGURE 3. (A) Mean optical reflectivities of the RPE in control subjects (normal) and the five disease groups. The mean results for the three CD cases are plotted. No significant differences are found. (B) Similar mean reflectivities of the vitreous of control subjects and patients. (C) Reflectivities of the different cystoid spaces. Dashed line: average reflectivity of the vitreous. The reflectivity of cystoid lesions in IPT was significantly less than the reflectivity of the cystoid spaces in eyes with exudative maculopathy. Also, the three values from the three patients with CD were below the average in normal vitreous. (D) Mean pooled reflectivity of cystoid spaces in IPT was significantly less than that of spaces in the exudative maculopathies (DME, CSC, RP; mean ± SD, 954.6 ± 64.3 vs. 989.6 ± 65.4 AU P < 0.0001). When the data from the CSC group were removed from exudative maculopathies, the comparison between nonexudative and exudative intraretinal cavities still showed a significantly higher reflectivity (954.6 ± 64.3 vs. 972.8 ± 57.7 AU, #P < 0.001) for exudative cystoid spaces. The three CD patients showed much lower reflectivity than did patients with exudation-associated intraretinal spaces.

hypothesis that spaces without exudation have a degenerative etiology.16,17

The demonstration that intraretinal spaces of low reflectivity can have variations in appearance on OCT that are related to the underlying disease has the potential to improve clinical decision-making. For example, persistent intraretinal fluid, as evidenced by cystoid hyporeflective intraretinal spaces, may be used as an indication to continue treatment with vascular endothelial growth factor inhibitors.1 However, if these spaces result from nonexudative, or dry, degeneration, then the degeneration might be exacerbated by further treatment, and this treatment should be withheld.

The location of the cystoid spaces in these degenerative maculopathies may provide clues to their nature. Cystoid spaces in the outer retina are not unexpected in CD. Inner retinal spaces may also be anticipated in IPT, since the vascular changes that characterize the condition point to involvement of the inner retina as well. It is the presence of inner retinal cystoid spaces in eyes with CD that is surprising, since CD is understood to affect primarily the photoreceptors. The presence of inner retinal hyporeflective spaces in eyes with CD suggests an influence of the outer retina on the inner retina, the nature of which is obscure. One possibility is that the death of photoreceptors results in retrograde degeneration of the inner retina, which eventually leads to formation of a cystoid space.
It has been proposed that the degeneration of the neural retina that characterizes IPT is primarily due to Müller cell damage.18,19 Gass20 drew attention to the “Müller cell cone,” a layer of Müller cells above the layer of Henle immediately beneath the inner limiting membrane (ILM) in the base of the foveal depression. Disease of the Müller cells may thus explain the “ILM drape” across cavities in the inner retina at the base of the foveal depression that are commonly found in eyes with IPT on OCT.10

Although the OCT reveals neither the origin nor the composition of the intraretinal spaces, the lower reflectivity of the spaces found in IPT and CD, compared with RP, CSC, and DME, may be due to the presence of albumin and acute-phase serum reactants in the latter, causing more backscattering. Macular edema secondary to diabetes and RP is recognized to be caused by a breakdown of the blood-retinal barrier, as is the subretinal fluid in CSC.21–24 The lower reflectivity of spaces found in the putative degenerative maculopathies suggests that they have lower protein content, in which case they are probably not the result of breakdown of the blood-retinal barrier. It is more likely that the cysts represent areas of cell loss by apoptosis, which is not associated with inflammation or exudation.18 Therefore, we propose that cysts with an optical index greater than the vitreous have an exudative etiology, whereas those with reflectivity less than the vitreous are degenerative.

This study is limited by the relatively small number of participants. In particular, only two eyes of one participant with CD had inner retinal spaces identical with those seen in IPT. We have reported another case in which the development of inner cystoid spaces typical of IPT was preceded by clinical and electrophysiological features of CD.11 In the unlikely event that the association of inner cystoid spaces with CD was a coincidence, then conclusions drawn about the influence of the outer retina on the inner retina would be unfounded. However, the clear, quantifiable differentiation of intraretinal spaces on the basis of their optical reflectivity still stands.

Analyzing the light reflection profiles from OCT to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous may be a way to differentiate processes in the central macula. Further research is warranted to determine how this approach may be used to improve diagnosis and treatment of macular diseases.
Acknowledgments

The authors thank Jeannie Wurz for careful editing of the manuscript.

References

