Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Ca Knockout Mice

Zhuo Chen,1,2 Zbijie Li,3 Surendra Basti,1,4 William J. Farley,1 and Stephen C. Pflugfelder1

PURPOSE. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCa knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCa−/− mice.

METHODS. In PKCa+/+ control mice and PKCa−/− mice, tear production, osmolality, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding.

RESULTS. Compared with the PKCa+/+ mice, the PKCa−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCa−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCa+/+ mice.

CONCLUSIONS. The PKCa−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCa−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.

5592–5600 DOI:10.1167/iovs.09-4562

5592–5600 DOI:10.1167/iovs.09-4562

From the 1The Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas; the 2Tianjin Eye Hospital, Tianjin, Peoples Republic of China; the 3Key Laboratory for Regenerative Medicine and Department of Ophthalmology, Jinan University, Guangzhou, Peoples Republic of China; and the 4Department of Ophthalmology, Northwestern University, Evanston, Illinois.

Supported by a grant from Fight for Sight; National Institutes of Health Grant EY011915 (SCP), National Eye Institute, Bethesda, MD; and an unrestricted grant from Research to Prevent Blindness.

Submitted for publication August 31, 2009 revised January 28 and May 11, 2010; accepted May 18, 2010.

Disclosure: Z. Chen, None; Z. Li, None; S. Basti, None; W. J. Farley, None; S. C. Pflugfelder, None

Corresponding author: Stephen C. Pflugfelder, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, 6565 Fannin Street, NC-205, Houston, TX 77030; stevenp@bcm.tmc.edu.

Copyright © Association for Research in Vision and Ophthalmology
tors, and also by physical stresses such as hypoxia and mechanical strain. Therefore, this isotype plays an important role in the control of major cellular functions, including proliferation, apoptosis, differentiation, and motility, depending on where and when it is activated and what substrates it acts on.

The proliferative effect of PKCα is mediated via activation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade. PKCα is also involved in cell differentiation and cell migration and adhesion by interacting with the integrin β1, ezrin, radixin, and moesin (ERZ) proteins and the Factin-binding proteins, which are involved in the maintenance of cell survivor and extension. Some studies have reported that the overexpression of PKCα in human skin keratinocytes has no effect on proliferation or differentiation. The contribution of PKCα to corneal epithelial cell proliferation and differentiation after wound healing has not been evaluated.

Programmed cell death occurs by apoptosis and cornification in the epithelia. PKCα has been reported to increase expression of the cornified envelope precursor gene, SPRR1, which may promote death by cornification.

Besides its proliferative and cornification functions, PKCα has been noted to inhibit inflammation by negatively regulating NFKB-induced cytokine expression—particularly, that of interleukin (IL)-1. We evaluated the morphology and secretory function of the LFU in PKCα−/− mice. The effects of PKCα knockout on tear production and tear concentrations of lacrimal growth factors, such as epidermal growth factor (EGF), that support the ocular production and tear concentrations of lacrimal growth factors, have been noted to inhibit inflammation by negatively regulating NFKB-induced cytokine expression—particularly, that of interleukin (IL)-1. We evaluated the morphology and secretory function of the LFU in PKCα−/− mice. The effects of PKCα knockout on tear production and tear concentrations of lacrimal growth factors, such as epidermal growth factor (EGF), that support the ocular production and tear concentrations of lacrimal growth factors, have been noted to inhibit inflammation by negatively regulating NFKB-induced cytokine expression—particularly, that of interleukin (IL)-1.

We evaluated the morphology and secretory function of the LFU in PKCα−/− mice. The effects of PKCα knockout on tear production and tear concentrations of lacrimal growth factors, such as epidermal growth factor (EGF), that support the ocular production and tear concentrations of lacrimal growth factors, have been noted to inhibit inflammation by negatively regulating NFKB-induced cytokine expression—particularly, that of interleukin (IL)-1.

Materials and Methods

Animal and Genotype

PKCα gene−deficient mice were generated by homologous recombination and were provide as a gift from Michael Leitges (Laboratory for Lymphocyte Signaling, University of Cologne, Cologne, Germany). The PKC isoenzymes were adapted from the rat to the mouse. Targeted embryonic stem (ES) cells (PKCα−/−) were injected into NMRI albino mouse blastocysts to generate chimeras. Germ line–transmitting male mice contained 10 female and 10 male mice. Genotypes of 1-month-old mice and PKCα−/− mice and PKCα−/− mice were used to establish a homozygous, PKCα−/− line. Male mice from this line were compared with age-matched male mouse blastocysts to generate chimeras. Germ line–transmitting male mice and PKCα−/− mice and PKCα−/− mice were used to establish a homozygous, PKCα−/− line. Male mice from this line were compared with age-matched male mice.

The PKCα−/− mice and PKCα−/− mice were compared in the two lines. PKCα−/− mice and PKCα−/− mice were compared in the two lines. PKCα−/− mice and PKCα−/− mice were compared in the two lines.

PKCα gene−deficient mice were generated by homologous recombination and were provide as a gift from Michael Leitges (Laboratory for Lymphocyte Signaling, University of Cologne, Cologne, Germany). The PKC isoenzymes were adapted from the rat to the mouse. Targeted embryonic stem (ES) cells (PKCα−/−) were injected into NMRI albino mouse blastocysts to generate chimeras. Germ line–transmitting male mice were crossed to 129/SV females to give rise to F1 heterozygous mice. Further confirmation of PKCα deficiency was detected by the absence of PKCα-specific primer pairs. The PCR products were analyzed by 1.5% agarose gel electrophoresis. A 520-bp band was obtained from the wild-type mice (+/+) and a 200-bp fragment from homozygous PKCα−/− mice, with both bands detected in the heterozygotes (+/−) (Fig. 1).

Lacrimal Functional Unit of PKCα Knockout Mouse

A modification of a previously reported mouse model of experimental dry eye (EDE) was used. Briefly, age and sex-matched mice were placed in a low-humidity (<35%) environment and exposed to an air draft for 18 hours per day. They received SC injections of 0.5 mg/0.2 mL scopolamine hydrobromide (Sigma-Aldrich, St. Louis, MO) in alternating hindquarters, four times per day (9 AM, Noon, 3 PM, and 6 PM) to inhibit tear secretion.

Aqueous Tear Production

Tear volumes were measured by using phenol red-impregnated cotton threads (Quick Zone; Oasis, Glendora, CA), held in the tear meniscus of the lateral canthus for 20 seconds. The measured uptake of tear fluid in millimeters was compared with a standard curve prepared from cotton threads of known uptake volumes of a stock basic solution (1500 mL of 0.9% saline and 5 mL of 5 N NaOH) over 20 seconds, with volumes in the range that would be expected in mouse tears.

Fluorescein Clearance Test

The fluorescein clearance test is a measure of total tear production, tear spread, and tear drainage. This test was performed by instilling 1 μL of 2% sodium fluorescein into the conjunctival sac. After 15 minutes, 1 μL of phosphate-buffered saline (PBS) was instilled, and the fluorescein-stained tear fluid was collected atraumatically from the lateral tear meniscus for 20 seconds under a surgical microscope with a 1-μL volume glass capillary tube (Drummond Scientific Co., Broomhall, PA). The tear sample collected from the capillary tube was eluted into a 1.5-μL tube containing 99 μL PBS and centrifuged for 5 minutes. The solution was transferred to a single well in a 96-well plate. The fluorescein concentration was measured with a fluorophotometer (CytoFluor II; Perceptive Biosystems, Framingham, MA), using 485-nm excitation and 530-nm emission filters.

Corneal Permeability to AlexaFluor Dextran

The corneal uptake of 10-kDa AlexaFluor dextran (AFD; Molecular Probes, Eugene, OR) was measured by using a modification of a previously reported technique. Briefly, 1 μL of 0.5% AFD was instilled onto the ocular surface 15 minutes before euthanatization. Excised corneas were rinsed four times with 200 μL balanced salt solution (BSS; Alcon Laboratory, Inc., Fort Worth, TX) and placed in 200 μL balanced salt solution. The solution containing the corneal tissue was protected from light and placed on an orbital shaker. The concentration of eluted AFD was measured with 485-nm excitation and 530-nm emission filters at 10, 20, and 60 minutes on a fluorophotometer (CytoFluor II; Perceptive Biosystems).

![FIGURE 1. Genotype determination by PCR of mouse tail genomic DNA using PKCα-specific primer pairs. The PCR products were analyzed by 1.5% agarose gel electrophoresis. A 520-bp band was obtained from the wild-type mice (+/±), a 200-bp band from the PKCα knockout mice (−/−), and both bands from the heterozygotes (+/−).](https://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/932968/ on 11/20/2018)
Tear Sodium and Osmolarity Measurements

Tear sodium and osmolarity measurements were performed by using a published method, with modifications. Briefly, 5 μL of a red mitochondrial probe (CoroNa Red, cat. no. C-24431; Molecular Probes, Eugene, OR) in DMSO was added to each sample. The samples were placed in individual wells of a round-bottomed, 96-well plate (cat. no. 163320; Nunc, Rochester, NY). A multwell plate reader (CytoFluor II; Perkin Elmer, Wellesley, MA) was then used to measure fluorescence intensity. A standard curve was created with the fluorescence values from 500 mM of the mitochondrial dye in DMSO placed in a 10-μL glass capillary tube (Drummond Scientific Co.) from the tear meniscus in the lateral canthus and immediately added to 4.5 μL of distilled water. The samples were then capped to prevent evaporation and frozen for further analysis.

Tear Collection

PBS (1.5 μL) containing 0.1% bovine serum albumin (BSA) was instilled into the conjunctival sac. The tear fluid and buffer were collected with a 1-μL volume glass capillary tube (Drummond Scientific Co.) from the tear meniscus in the lateral canthus.

Collection of tear fluid to measure sodium concentration was performed before and after 3 days of desiccation stress. Briefly, 1 μL of distilled water was instilled into the conjunctival sac for 20 seconds. The diluted tear fluid was collected with a 0.5-μL glass capillary tube (Drummond Scientific Co.) from the tear meniscus in the lateral canthus and immediately added to 4.5 μL of distilled water. The samples were then capped to prevent evaporation and frozen for further analysis.

The osmolarity of the mouse tear sample derived from sodium concentration was then calculated by comparing the sodium concentration in the tear sample with the osmolarity of a standard curve established from samples of known sodium concentrations, whose osmolarity was determined by using a vapor pressure osmometer (model 3300; Advanced Instruments Inc., Norwood, MA) at the clinical core laboratory of the Department of Pathology at Methodist Hospital (Houston, TX).

The serum osmolarity of the two mouse strains was determined by taking blood from the orbital venous sinus immediately after euthanization. The serum was separated from the blood by centrifuging at 14,000 rpm (Microcentrifuge model 5417 C, 18,000g; Eppendorf, Fremont, CA) at room temperature for 10 minutes, and the osmolarity was measured (Table 1).

Lacrimal Gland Weight

After euthanatization, both exorbital lacrimal glands were removed from PKCα+/+ and PKCα−/− mice. The lacrimal glands’ weight and volume and the mouse’s body weight were measured. The lacrimal gland density (weight/volume) and the lacrimal gland/body weight ratio were compared between the two mouse strains.

Histology and Immunofluorescent Staining

After the mice were euthanatized, the eyeballs, together with the eyelids and conjunctiva, were excised; embedded in a mixture of 75% (vol/vol) OCT compound (Sakura Finetek USA., Inc., Torrance, CA) and 25% (vol/vol) aqueous mounting medium (Immu-Mount; Thermoshandon, Pittsburgh, PA); and fresh frozen in liquid nitrogen. Sections (10 μm thick) were cut and stained with hematoxylin and eosin (H&E) or periodic acid-Schiff (PAS), to detect the carbohydrate-rich cells, which stain for a high proportion of carbohydrate macromolecules (i.e., conjunctival goblet cells and granules in acinar cell). For immunofluorescent staining, sections were fixed with 100% methanol at 4°C for 10 minutes and blocked with 5% normal goat serum in PBS for 30 minutes. The primary antibody was applied for 1 hour at room temperature. These monoclonal antibodies and goat polyclonal antisera were reactive with mouse EGF (Monosan, Uden, Netherlands), PKCo (BD Transduction Laboratories, San Jose, CA), MUC-SAC (a gift from Marcia Jumbiatt, University of Louisville, Louisville, KY) and SPRR2 (Apoptech, Epalinges, Switzerland). After the sections were washed with PBS, the species-specific secondary antibody (AlexaFluor-488 conjugate; 1:100 dilution; Molecular Probes) was applied for 1 hour in a dark incubation chamber. After another wash with PBS, the sections were mounted with antifade medium (Gem-Mount; Fisher, Atlanta, GA) containing 1 μg/mL Hoechst 33342 dye, and a coverslip was applied. The sections were examined and photographed with an epifluorescence microscope (Eclipse 400; Nikon, Tokyo, Japan) and a digital camera (model DXM 1200; Nikon).

BrdU Incorporation

BrdU is a nucleoside that can be incorporated into DNA in place of thymidine to measure DNA synthesis and cell proliferation. Mice were injected with 100 μg BrdU/g body weight intraperitoneally for 1 to 2 hours before euthanatization. BrdU was detected by immunostaining frozen sections that were fixed in cold methanol at 4°C for 10 minutes, used a dilution factor based on the previously measured tear sodium concentration to give the following formula: total tear sodium concentration curve, by using a dilution factor based on the previously measured tear sodium concentration was then calculated from the standard curve established from samples of known sodium concentrations, whose osmolarity was determined by using a vapor pressure osmometer (model 3300; Advanced Instruments Inc., Norwood, MA) at the clinical core laboratory of the Department of Pathology at Methodist Hospital (Houston, TX).

The serum osmolarity of the two mouse strains was determined by taking blood from the orbital venous sinus immediately after euthanization. The serum was separated from the blood by centrifuging at 14,000 rpm (Microcentrifuge model 5417 C, 18,000g; Eppendorf, Fremont, CA) at room temperature for 10 minutes, and the osmolarity was measured (Table 1).

FIGURE 2. Immunofluorescent staining of PKC (arrow) in cornea (top) and lacrimal gland (bottom) from PKCa+/+ (left) and PKCa−/− mice (right).
followed by incubation with 2 N HCl at 37°C for 1 hour, to denature the DNA, and neutralization in boric acid (pH 8.5) for 20 minutes. Anti-BrdU polyclonal antibody (1:100) was applied, followed by incubation with anti-rabbit secondary antibody (1:300) with 3,3′-diaminobenzidine (DAB) and hematoxylin counterstaining. The BrdU labeling index was assessed by point-counting positively stained cells through an inverted microscope (TE2000; Nikon), equipped with a 40× objective lens. A total of 500 to 951 nuclei were counted in six to eight representative fields because this number was considered to be the minimum requirement to observe representative labeling.23 The labeling index was expressed as the number of positively labeled nuclei/total number of nuclei × 100%.

Corneal Epithelial Wound Healing

A central corneal wound was made as previously described.24,25 Age- and sex-matched PKCa+/+ and PKCa−/− mice were used in the experiments. Briefly, the central corneal epithelium was marked with a 3-mm trephine and then debrided with a golf club-shaped spatula (Accutome, Malvern, PA) under a dissecting microscope. After the corneal wound was created, the rate of closure was measured in digital images of fluorescein-stained corneas obtained every 6 hours.

Immunofluorescent Staining of Whole Mount Corneas

A protocol described in another publication24 was used for morphometric analysis of the corneal response to injury. Immunofluorescent staining using anti-Gr-1-FITC (PharMingen, San Diego, CA) to detect neutrophils and anti-tubulin (Sigma, St. Louis, MO) to detect cells undergoing mitosis was performed in excised corneas with the limbus retained. Nuclear morphology and cell division were assessed by staining with 1 μM 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, St. Louis, MO) in flat, whole mount corneas. The pattern of microscopic analysis included counting inflammatory cells (i.e., neutrophils) or healing (dividing epithelial cells) in nine microscopic fields (40× objective; field of view diameter, 0.53 mm) across the cornea from limbus to limbus. Digital images were captured and saved for analysis (DeltaVision; Applied Precision, Issaquah, WA). At least six corneas were examined in each group, and the average number of cells in each field was calculated and used for statistical analysis. The limbus was defined as the intervening zone between the cornea and sclera, and was considered the most peripheral field.

Statistical Analysis

Based on the normality of the data distribution, the t-test or Mann-Whitney test was used for statistical comparison of assay results between groups. P < 0.05 was regarded as statistically significant.
The serum osmolarity of the PKCa+-/+ mice (n = 4) was 324 ± 3.9 mOsm/L at baseline and 330 ± 2.7 mOsm/L after 3 days of EDE, whereas the serum osmolarity of the PKCa-/- mice (n = 4) was 324 ± 5.4 mOsm/L at baseline and 331 ± 7.3 mOsm/L after 3 days of EDE. There was no significant difference between baseline and EDE measurements in either strain.

Lacrimal Gland Weight. The lacrimal glands of the PKCa-/- mice weighed more (0.069 ± 0.03 g, n = 4) than those of the age-matched PKCa+-/+ mice (0.038 ± 0.018 g, n = 4, P < 0.05; Fig. 5). Similarly, lacrimal gland density (weight/volume) in the PKCa-/- mice (2.76 ± 0.6 mg/mm³) was higher than that in the age-matched PKCa+-/+ mice (1.21 ± 0.071, P < 0.05), as was the ratio of lacrimal gland to body weight (2.13 ± 0.57 in the PKCa-/- mice, 1.21 ± 0.049 in the PKCa+-/+ mice; P < 0.05).

Corneal Epithelial Permeability to AFD. Decreased corneal epithelial barrier function is a key feature of human dry eye. We assessed it by measuring corneal permeability to AFD. There was no difference in AFD permeability in the corneas of the PKCa-/- and the age-matched PKCa+-/+ mice as three males and two females at baseline. After EDE for 3 days, the corneas of the PKCa-/- mice were significantly more permeable to AFD (475 ± 25 U, n = 5) than were those of the age-matched PKCa+-/+ mice (300 ± 25 U, n = 5, P < 0.05, by Mann-Whitney test). This finding

![Figure 6](https://iovs.arvojournals.org/pdfaccess.ashx?url=/data/journals/iovs/932968/ on 11/20/2018)

Figure 6. Histology and immunofluorescent (IF) staining of cornea, conjunctiva, and lacrimal gland of PKCa+-/+ and PKCa-/- mice. (A) Corneal epithelia: H&E staining and IF for involucrin and SPRR2 in mice subjected to EDE for 3 days (arrows, IF staining). (B) Conjunctiva: PAS staining (top, arrows, secretory granules) and IF for MUC5AC (arrows, IF staining) with Hoechst 33342 as the counterstain. (C) Lacrimal glands: H&E and PAS staining (arrows, secretory granules) and IF for EGF (arrows, IF staining) with Hoechst 33342 as the counterstain.
The number of lacrimal gland acinar cells in the PKCa−/− samples was similar to that in the wild-type, but they appeared to be filled with secretory granules that were not being discharged into the lumen. Furthermore, the lacrimal glands of the PKCa−/− mice had stronger staining for EGF, a growth factor produced by the acinar cells and secreted into the tears, than in the PKC +/+ mice, but the difference was without statistical significance (immunofluorescent staining intensity: PKCa+/+ mice: 50.35 ± 17.62; PKCa−/− mice: 52.95 ± 18.17; P > 0.05; Fig. 6C).

BrdU Incorporation Index. BrdU incorporation was evaluated as a marker of cell proliferation in tissues of the LFU. The PKCa−/− mice (n = 4) had a greater percentage of BrdU-positive cells in the cornea, conjunctival epithelia, and lacrimal gland acinar cells (21.25% ± 5.78%, 8.49% ± 2.85%, and 11.11% ± 4.37%, respectively) than did the PKC +/+ mice (n = 4; 10.85% ± 3.92%, 2.83% ± 0.95%, and 3.39% ± 1.49%, respectively; all P < 0.05). These findings indicate that PKCa is essential in initiating proliferation in the cells of the LFU (Fig. 7).

Wound Healing

Effect of PKCa Deficiency on Corneal Re-epithelialization after Wounding. A standard model of corneal wound healing was established by removal of a 3-mm-diameter area of epithelium from the center of the cornea. The epithelial healing was monitored by fluorescein staining of the exposed stroma in the PKCa−/− and PKCa+/+ mice. At 6, 12, and 18 hours after wounding, the size of the wounded areas in PKCa+/+ and the PKCa−/− mice were similar. At 24 and 36 hours after creation of the epithelial defect, wound areas in the PKCa+/+ mice were reduced to 2% and 0% of the original area, respectively. In contrast, wound areas in the PKCa−/− mice were reduced to 17% and 7% (Fig. 8). Complete epithelialization was accelerated between 18 and 36 hours in the post-wound PKCa−/− mice compared with that in the wild-type mice.

PKCa has been observed to have a regulatory role in cell proliferation that is crucial to corneal wound healing.25 Epithelial basal cell division was noted to be decreased in the PKCa−/− mice at 18 and 30 hours after epithelial debridement compared with that in the wild-type mice (Fig. 9).

Effect of PKCa Deficiency on Neutrophil Accumulation in the Cornea. Experimental neutropenia induced by depletion of neutrophils has been noted to accelerate corneal epithelial wound closure.27–29 PKCa activation in keratinocytes is a crucial event that orchestrates cutaneous neutrophil responses by increasing the concentration of two chemotactic factors: cytokine-induced neutrophil chemoattractant and macrophage inflammatory protein (MIP)-2 in murine plasma.29–31 To determine whether the accelerated corneal epithelial heal-

FIGURE 7. BrdU incorporation (arrows) in corneal (top) and conjunctival (middle) epithelia and lacrimal gland (bottom) in PKCa+/+ and PKCa−/− mice (n = 4).

FIGURE 8. Accelerated corneal epithelial wound healing in PKCa−/− mice. (A) Fluorescein-stained corneal images after corneal epithelial debridement in PKCa+/+ and PKCa−/− mice. (B) Percentage of the original wound area is plotted over time and was calculated from the area of fluorescein staining at each time point. Data are mean ± SD (n = 6; **P < 0.01).
ing observed in the PKCα−/− mice is linked to reduced neutrophil migration, we analyzed neutrophil accumulation at 18 and 30 hours after epithelial debridement. Neutrophil migration into the avascular cornea stroma in the PKCα-deficient and wild-type mice was similar at 18 hours (Fig. 10A). In contrast to the response of the wild-type mice, the PKCα−/− mice had a markedly blunted accumulation of neutrophils in every field from limbus to limbus at 30 hours after wounding (*P < 0.005, Fig. 10B). These results demonstrate that neutrophil recruitment that occurs during the inflammatory phase after corneal epithelial wounding is markedly reduced in the absence of PKCα.

DISCUSSION

Effects of PKCα Deficiency on the Morphology and Function of the Lacrimal LFU

PKCα gene knockout was noted to affect the morphology and function of the LFU. These changes included reduced tear production, secretory paralysis of the lacrimal gland acinar and conjunctival goblet cells, increased permeability of corneal epithelia after experimental desiccating stress, and decreased cornification of the corneal epithelia.

Loss of PKCα appears to block the parasympathetic pathway of lacrimal gland acinar and conjunctival goblet cell secretion. This effect was signified by the enlarged cell size and stronger carbohydrate-rich cells stained in both tissues, and the failure of exocytosis, due to the lack of the PKCα gene in the exocytic process of preformed secretory vesicles with an apical plasma membrane. The PKCα−/− mice showed an elevated ocular surface response to experimental desiccating stress, with increased disruption of corneal epithelial barrier function. These changes may be directly due to the loss of the PKCα gene or may be secondary to the reduced secretion of the corneal supportive factors by the lacrimal gland and conjunctival goblet cells. Secretion of one such factor, EGF, was noted to be decreased.

FIGURE 9. Effects of PKCα deficiency on dividing basal cells after corneal epithelial debridement. Dividing basal epithelial cells in each region of the cornea at 18 (A) and 30 (B) hours, respectively, after epithelial debridement. Representative photos of dividing cells (arrow) stained by tubulin (green) in PKCα+/+ (C) and PKCα−/− mice (D) at 18 hours after wounding. DAPI (blue) was used for counterstaining. *P < 0.05 and **P < 0.01.

FIGURE 10. Neutrophil infiltration in PKCα-deficient mice after epithelial debridement. Neutrophil migration to corneal stroma in each region of the cornea at 18 (A) and 30 (B) hours, respectively, after epithelial debridement. *P < 0.005. Representative photos of neutrophils (arrow) stained by anti-Gr-1-FITC in PKCα+/+ (C) and PKCα−/− mice (D) at 30 hours after wounding.
Effect of PKCa Deficiency on Corneal Epithelial Wound Healing and Inflammation

Traumatic corneal epithelial abrasion is a very common condition encountered in clinical practice. To further characterize the healing response after corneal epithelial debridement, we used our standardized epithelial wound model to evaluate the healing rate, proliferation, and inflammatory cell infiltration of the corneal epithelium. PKCs are key intracellular signal transduction mediators that are involved in various cell functions throughout the body, including cell growth and differentiation. Their known functions suggest that they have a pivotal role in the corneal wound healing. Studies have already established the presence of PKCa in normal rabbit corneal epithelium. Its expression increased during epithelial wound healing. An oligonucleotide-targeting rabbit PKCa was found to inhibit the wound-healing process in vitro by more than 50%. In contrast to the predictions made on the basis of these previously reported studies, we found that PKCa−/− mice show accelerated corneal epithelial wound healing and faster re-epithelialization compared with PKCa+/+ mice.

The mechanism of these conflicting results is not clear. One factor that influences healing rate is the local inflammatory response that may have a positive or negative impact on the healing rate, as debated in a recent review. The neutrophil is the predominant cell type in the acute phase of inflammation, followed by a second wave of monocyte infiltration. Although it is widely recognized that the infiltration of neutrophils into injured tissue protects wounds from invading pathogens, more recent studies suggest that neutrophils inhibit the wound repair process, including that in skin and corneal epithelium. The present study showed that neutrophil infiltration into the injured cornea was markedly decreased in the PKCa−/− mice and is consistent with the finding of a study linking neutrophil infiltration to PKCa activation in the epidermis. Therefore, deficient neutrophil infiltration is one of several possible explanations for the accelerated corneal epithelial re-epithelialization in the present study.

PKCa-modulated events in the cornea appear to have greater effects on epithelial healing than PKCa deficiency has on lacrimal gland function. A reduced corneal epithelial healing rate would be expected based on the reduced tear production that was observed in these mice. In summary, PKCa has essential functions in regulating tear secretion by the LFEU and the ocular surface response to desiccating stress and corneal epithelial trauma. The details of the mechanism should be further investigated.

References

