The effect of d-isoproterenol on intraocular pressure of the rabbit, monkey, and man

D-isoproterenol d-bitartrate applied topically lowers intraocular pressure (IOP) in normal albino rabbits and rabbits with alpha-chymotrypsin-induced glaucoma. This effect is independent of any effect on systemic blood pressure or pulse rate. A similar response could not be obtained in monkey or human eyes. Subconjunctival injection of d-isoproterenol d-bitartrate to monkey eyes did not alter IOP.

Key words: d-isoproterenol, tachycardia, blood pressure, intraocular pressure, cAMP, facility of outflow, rabbit, monkey, human.

Isoproterenol lowers intraocular pressure (IOP) in rabbits,1-4 primates,5 and man.6-11 Topical application of racemic isoproterenol lowers intraocular pressure in human eyes.6-11 However, a significant percentage of the patients develop tachycardia.6-9 Recently, Seidehamel, Dungan, and Hickey12 reported that d-isoproterenol lowered intraocular pressure in rabbits without producing tachycardia. The present experiments were designed to explore this possibility further.

Methods

Rabbits. Albino rabbits, 2 to 3 kilograms in weight, received topical 2 per cent lidocaine to both eyes. The IOP was measured with a Mackay-Marg tonometer or an Alcon Pneumotonograph every 15 minutes until stable readings were obtained. Two drops of 10 per cent d-isoproterenol d-bitartrate were placed in the superior cul-de-sac of one eye. Saline diluent was applied to the other eye. The lids were held open for 30 seconds forming a trough for the solution. The IOP was measured at 30, 60, 90, 120, 150, 180, 210, 240, and 300 minutes after drug administration.

Albino rabbits had chronic elevations of intraocular pressure in one eye months to years following a posterior chamber injection of alpha-chymotrypsin by a technique previously described.13 In a similar fashion to that described above, topical application of the following drugs was employed to the affected eye: 5 per cent dl-isoproterenol HCl, (Sigma) 5 per cent l-isoproterenol HCl (Sigma), and d-isoproterenol d-bitartrate in concentrations of 0.1, 1, 5, and 10 per cent.

Six albino rabbits were pretreated with intravenous propranolol, 5 mg. per kilogram, (Sigma) 30 minutes prior to receiving topical d-isoproterenol. Four rabbits were pretreated with intravenous phenoxybenzamine, 25 mg. per kilo-
two drops of 1 per cent 1-epinephrine HC1. The were anesthetized with intravenous urethane, prevailing IOP by a technique previously de-

tcribed. 3

both anterior chambers 60 minutes after topical
gauge for the next 30 minutes to determine the

pressure transducer. Continuous measurements of
catheter was placed in the left common carotid
artery and connected to a Sanborn recorder via a

phencyclidine, 1 to 2 mg. per kilogram. The

rabbits, weighing 5 to 10

grams, (Smith, Kline, and French) 24 hours prior
to receiving topical d-isoproterenol. At the con-
clusion of the experiment, the control eye received
two drops of 1 per cent l-epinephrine HC1. The
pupillary diameters were measured with a visual
gauge for the next 30 minutes to determine the
completeness of the alpha blockade.

Five albino rabbits underwent paracentesis of
both anterior chambers 60 minutes after topical
application of d-isoproterenol to one eye. The
aqueous humor samples collected were assayed for
cyclic adenosine monophosphate (cAMP) by a
technique previously described.

Five albino rabbits were anesthetized with intra-
venous urethane, 2 Gm. per kilogram. Both
anterior chambers were cannulated 60 minutes
after topical application of d-isoproterenol to one
eye. Outflow facility was measured by perfusion
at two levels of constant pressure above the
prevailing IOP by a technique previously de-
scribed.

Four albino rabbits, weighing 2 to 3 kilograms,
were anesthetized with intravenous urethane, 2
Gm. per kilogram. A 10-gauge polyethylene
catheter was placed in the left common carotid
artery and connected to a Sanborn recorder via a
pressure transducer. Continuous measurements of
blood pressure and pulse rate were recorded.
Intravenous injections of various doses of d-
isoproterenol d-bitartrate, and d,l-isoproterenol HCl
were made through a marginal ear vein.

Monkeys. Rhesus monkeys, weighing 5 to 10
kilograms, were anesthetized with intramuscular
phencyclidine, 1 to 2 mg. per kilogram. The
IOP was measured with the Mackay-Marg to-
nometer or the Alcon Pneumotonograph until
stable readings were obtained. D-isoproterenol d-
bitartrate 10 per cent was applied topically to
to one eye, saline diluent to the other in a similar
fashion to that described above. The IOP was
measured at 15, 30, 60, 90, 180, and 240 minutes
after drug administration. Another group of rhe-
sus monkeys received 1 mg. of d-isoproterenol

Table I. Reduction of IOP 60 minutes
after topical d-isoproterenol d-bitartrate
in rabbits with alpha-chymotrypsin

<table>
<thead>
<tr>
<th>Concentration of d-isoproterenol d-bitartrate (%)</th>
<th>No. of eyes</th>
<th>Decrease in IOP from pretreatment level (mm. Hg) ± S.E.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0.3 ± 1.6*</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>3.7 ± 2.5*</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>4.7 ± 2.8*</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>9.4 ± 1.1†</td>
</tr>
</tbody>
</table>

*Difference not statistically significant.
†Difference statistically significant, p < 0.05.

d-bitartrate subconjunctivally to one eye and
saline diluent to the other eye.

Humans. The IOP of eight normal, human
volunteers was measured with a Goldmann
tonometer after topical 0.5 per cent proparacaine
anesthesia. Two drops of 10 per cent d-isop-
proterenol d-bitartrate were placed in the super-
ior cul-de-sac of one eye. Saline diluent was given
to the other eye. The intraocular pressure was
measured 15 and 30 minutes after the medica-
tion and then hourly for the next 8 hours. Five
normal, human volunteers received 20 per cent
d-isoproterenol HCl topically to one eye in a
similar fashion.

Analysis of purity. The purity of the d-isop-
proterenol was checked by chromatography on a
Zipax SCX column (1 meter by 2 mm.) using a
water-0.5 M sodium perchlorate gradient at a
rate of 5 per cent per minute and a flow rate
of 60 ml. per hour at 1,400 PSI. A solution of
the hydrochloride was prepared from the bitartrate
by first dissolving the bitartrate in water contain-
ning a small amount of sodium sulfite (for stability
purposes) and then adding an equal molar amount
of ammonium hydroxide. The free base crystall-
izes out upon cooling. The free base was then
re-crystallized from isopropyl alcohol-water 60/40
mixture. The hydrochloride was prepared by dis-
solving the free base in water and adding an
equimolar amount of hydrochloric acid. The
optical rotation of the d-isoproterenol was deter-
mined using a Perkin Elmer polarimeter.

Results

Rabbit. Topical application of 10 per cent
d-isoproterenol d-bitartrate lowered IOP in
normal albino rabbit eyes (Fig. 1). The
effect reached a maximum 60 minutes after
topical treatment and was essentially gone
by five hours. No significant contralateral
effect was noted. Pretreatment with either
intravenous propranolol or phenoxyben-
zamine did not alter the response of IOP
to topical d-isoproterenol. No influence of
topical d-isoproterenol was noted on pupil-
lar size.

Topical application of 10 per cent d-isopro-
terenol d-bitartrate lowered intraocular
pressure in rabbits with alpha-chymotrypsin

Humans. The IOP of eight normal, human
volunteers was measured with a Goldmann

Effect of d-isoproterenol on IOP

Figure 1. IOP after topical 10 per cent d-isoproterenol d-bitartrate in normal albino rabbits and rabbits with alpha-chymotrypsin induced glaucoma. At time zero, 10 per cent d-isoproterenol d-bitartrate is applied topically. ○ Normal albino rabbits (n = 11), ● alpha-chymotrypsin glaucoma rabbits (n = 17), □ control rabbits (n = 11).

The pretreatment pressures were quite similar in all four treatment groups. Four rabbits with alpha-chymotrypsin glaucoma received topical 5 per cent l-isoproterenol HCl. Two of the animals died within five minutes and the other two demonstrated a decrease in IOP similar to that caused by 10 per cent d-isoproterenol d-bitartrate.

Topical application of 5 per cent d,l-isoproterenol HCl produced a similar decrease in IOP in rabbits with alpha-chymotrypsin glaucoma as 10 per cent d-isoproterenol d-bitartrate.

The mean ± S.E.M. aqueous humor concentration of cAMP one hour after topical d-isoproterenol d-bitartrate in six normal albino rabbits was 30.0 ± 4.5 nmoles per liter. The concentration in the control eyes was 27.8 ± 1.6 nmoles per liter.

The mean ± S.E.M. facility of outflow 60 minutes after topical 10 per cent d-isoproterenol d-bitartrate in five normal albino rabbits was 0.52 ± 0.02 µl per minute per millimeter of Hg. The outflow in the control eyes was 0.28 ± 0.04 µl per minute per millimeter of Hg. This difference was statistically significant (p < 0.01).

Intravenous injection of 20 µg of d, l-isoproterenol HCl lowered blood pressure of albino rabbits by 20 to 45 mm. Hg for two to five minutes. Pulse rate increased by 60 to 120 beats per minute. Intravenous injection of 20 µg of d-isoproterenol d-bitartrate did not affect blood pressure or pulse rate. Intravenous doses of 40 to 200 µg of d-isoproterenol d-bitartrate lowered blood pressure by 6 to 10 mm. Hg for 10 to 30 seconds and increased pulse rate by 10 to 30 beats per minute. No change in IOP
Fig. 2. Chromatography of catecholamines on a Zipax SCX column (1 meter by 2 mm.) using a water-0.5 M sodium perchlorate gradient (5 per cent per minute) and a flow rate of 60 ml. per hour at 1,400 PSI.

was noted. An intravenous injection of 1 mg. of d-isoproterenol d-bitartrate lowered blood pressure 20 mm. Hg for less than five minutes. Intraocular pressure declined 3 to 4 mm. Hg for two to five minutes.

Monkeys. Topical 10 per cent d-isoproterenol d-bitartrate did not produce a reduction of IOP in rhesus monkeys. Subconjunctival injection of 1 mg. of d-isoproterenol d-bitartrate did not lower IOP in rhesus monkeys.

Humans. Topical 10 per cent d-isoproterenol d-bitartrate did not lower IOP in human volunteers at any time, over an eight-hour time course. Mild conjunctival hyperemia and irritation were briefly noted after administration of the drops. Topical administration of 20 per cent d-isoproterenol HCl produced marked conjunctival hyperemia and mild miosis that persisted for several hours. No reduction in IOP was noted.

Analysis of purity. The chromatographic results of d-isoproterenol can be seen in Fig. 2. The isoproterenol peak is removed from the peaks of the other catecholamines. Also, the d-isoproterenol hydrochloride gives identical results with the d,l-isoproterenol hydrochloride standard. Both the d-isoproterenol d-bitartrate and the d,l-isoproterenol hydrochloride plus d-bitartrate, show a slight shoulder as seen in Fig. 2. This may be due to a complex between the isoproterenol and the bitartrate which causes the perturbation of the chromatographic results. Thus, there are no detectable impurities in the d-isoproterenol d-bitartrate.
The optical rotation of the d-isoproterenol was determined to be $[\alpha]_{D}^{20} = 39.2^o$ (c = 5 in H$_2$O). This is in accordance with the expected results.

Discussion

Clinicians have long searched for additional adrenergic agents to treat glaucoma. Racemic isoproterenol HCl has been employed to lower intraocular pressure in humans.6,11 However, a high incidence of tachycardia following topical therapy to one eye has been reported.11 It was presumed that the activity was due to the biologically active 1-form.

Recently, Seidehamel, Dungan, and Hickey12 reported d-isoproterenol lowered IOP in rabbits without significant effect on the cardiovascular system. We were able to confirm that d-isoproterenol d-bitartrate lowers IOP in the rabbit. This compound appears to have only slight and transient effects on blood pressure and pulse rate, even when injected intravenously in large doses.

Topical d-isoproterenol appears to increase the facility of outflow in the rabbit eye. While the mechanism by which this occurs is obscure at the present time, there is suggestive, although not conclusive evidence, that the compound does not exert its effect by classical alpha or beta mechanisms. The lack of an increase in aqueous humor cAMP concentration after topical application of d-isoproterenol differs from the results reported for l-epinephrine, l-norepinephrine, and l-isoproterenol.3 Finally, the chromatographic analysis and the optical rotation data rule out the presence of another catecholamine or l-isoproterenol as a contaminant of the agonist.

Monkey and human eyes did not respond to topical administration of d-isoproterenol d-bitartrate nor did subconjunctival injection of the agonist lower IOP in the monkey eye. The reason for this lack of response is unclear at the present time. It is possible the species difference relates to the varying patterns of autonomic innervation of the trabecular meshwork.16

The d-isoproterenol was kindly supplied by Dr. F. C. Nachod of the Sterling-Winthrop Research Institute and by Drs. G. R. McKinney and R. J. Seidehamel of the Mead Johnson Research Center.

REFERENCES

14. Neufeld, A. H., Dueker, D. K., Vegge, T.,
et al.: Adenosine 3', 5'-monophosphate increases the outflow of aqueous humor from the rabbit eye, INVEST. OPHTHALMOL. 14: 40, 1975.
