The Relationship between Standard Automated Perimetry and GDx VCC Measurements

Nicolaaas J. Reus and Hanes G. Lemij

PURPOSE. To investigate the relationship between retinal light sensitivity measured with standard automated perimetry (SAP) and retardation of the peripapillary retinal nerve fiber layer (RNFL) measured with the GDx VCC (Laser Diagnostic Technologies, Inc., San Diego, CA).

METHODS. Forty-seven healthy subjects and 101 patients with glaucoma were examined with SAP and with the commercially available scanning laser polarimeter GDx VCC, with automated individualized compensation of anterior segment birefringence. Individual visual field test points and peripapillary RNFL retardation measurements were grouped into six corresponding sectors. The correlation between perimetry and GDx VCC measurements was determined, and the relationship between RNFL retardation and perimetry, expressed both in the standard decibel scale and in an unlogged scale, was described with linear regression analysis.

RESULTS. A statistically significant correlation was found in most sectors between perimetry and GDx VCC measurements in patients with glaucoma, but not in healthy subjects. A linear relationship was found between the unlogged sensitivities and GDx VCC measurements for the superotemporal and inferotemporal sectors. In the decibel scale, this relationship was curvilinear.

CONCLUSIONS. GDx VCC measurements of the peripapillary RNFL relate well with functional loss in glaucoma. Based on the observed relationships between function and structure, patients with mild to moderate visual field loss in glaucoma may be better monitored with the GDx VCC and patients who have severe loss, with SAP (Invest Ophthalmol Vis Sci. 2004;45: 840–845 DOI:10.1167/iovs.03-0046).

Glaucoma is an optic neuropathy with loss of retinal ganglion cells (RGCs) and their axons.1–3 The loss of RGC axons may be apparent structurally as a local and/or a diffuse thinning of the retinal nerve fiber layer (RNFL)4–6 and of the neuroretinal rim.7 Functionally, RGC atrophy leads to characteristic visual field defects. In clinical practice, as well as in clinical trials, both structural and functional losses are assessed for the diagnosis and monitoring of glaucoma.1,6,9

Functional losses by glaucoma are traditionally evaluated with standard automated perimetry (SAP). Perimetry assesses the differential light sensitivity (unlogged-DLS = \(L_D / L_i - L_B \)), where \(L_D \) is background luminance and \(L_i \) the stimulus luminance at threshold)\(^{10} \) at various locations in the central retina which is typically expressed in a decibel scale (decibel-DLS = 10 \(\log_{10} (L_{max}/(L_i - L_B)) \) where \(L_{max} \) is the perimeter’s maximum stimulus luminance). The relationship between function and structure has been found to be curvilinear for the relationships between decibel-DLS and number of ganglion cells1,11,12 and neuroretinal rim area.13–15 However, when differential light sensitivity is expressed in the unlogged-DLS scale, function appears to relate linearly to structure, as has been shown by Garway-Heath et al.11,15,16

Structural losses of the RNFL can be evaluated with scanning laser polarimetry (SLP). Instruments featuring this technique, such as the GDx nerve fiber analyzer (NFA) and the GDx VCC (both from Laser Diagnostic Technologies, Inc., San Diego, CA), estimate the thickness of the RNFL by measuring the summed retardation of a polarized scanning laser beam, induced by the form-birefringent microtubules that support the RGC axons.17–19 Retardation in these instruments is usually expressed in micrometers of thickness, based on the relationship between the amount of retardation and the histologically determined RNFL thickness in monkey eyes,19 although this relationship may vary somewhat in each nerve fiber bundle around the optic nerve head (Huang X, et al. IOVS 2003;44: ARVO E-Abstract 5365).

Both the GDx NFA and the GDx VCC are equipped with an anterior segment compensator to cancel the birefringent effects of the cornea and, to a lesser degree, the lens. Whereas the compensator of the GDx NFA is fixed, the GDx VCC is equipped with an automated so-called variable corneal compensator (VCC), allowing eye-specific compensation of anterior segment birefringence. Because of large interindividual and intranidividual variability in anterior segment birefringence,20–22 measurements with the GDx NFA do not always accurately reflect the RNFL,23 and have been reported to have only a moderate correlation with perimetry.24–30 Equipped with a VCC, SLP has been shown to allow objective assessment of localized structural RNFL defects.25 In addition, using a modified GDx NFA, Bowd et al.23 have shown that SLP measurements with VCC in patients with predominantly mild glaucomatous damage correlate better with perimetry than those with fixed compensation.

The purpose of the present study was to investigate the functional-structural relationship between standard automated perimetry and measurements of peripapillary RNFL retardation with the commercially available GDx VCC in healthy subjects and patients with glaucoma.

METHODS

Forty-seven healthy subjects and 101 patients with glaucoma were examined with SAP (Humphrey Field Analyzer [HFA]III, 24-2 Full Threshold or Swedish interactive threshold algorithm [SITA] Standard test program; Carl Zeiss Meditec, Dublin, CA) and SLP with individualized compensation of anterior segment birefringence (GDx VCC; Laser Diagnostic Technologies, Inc.). The research adhered to the tenets of the Declaration of Helsinki. Informed consent was obtained from the subjects after explanation of the nature and possible conse-
quences of the study. The institutional human experimentation committee had approved the research.

Patients with glaucoma were recruited consecutively from an ongoing longitudinal follow-up study \((n = 96)\) or after referral by a glaucoma specialist \((n = 5)\). All patients with glaucoma had a reproducible glaucomatous visual field defect with SAP and a glaucomatous appearance of the optic disc. Only one eye per patient was used for analysis. If more than one eye was eligible, the one with the more positive mean deviation (MD) for SAP was used. All patients with glaucoma were of white ethnic origin and had a visual acuity of 20/40 or better. Patients with any significant coexisting ocular disease, including posterior segment eye diseases and corneal diseases, or systemic diseases with possible ocular involvement, such as diabetes mellitus, were excluded.

Healthy subjects were recruited either consecutively from an ongoing longitudinal follow-up study or from employees of the Rotterdam Eye Hospital and their spouses and friends. All healthy subjects had a Glaucoma Hemifield Test result of ‘within normal limits’ for SAP, healthy-looking optic discs, and an intraocular pressure of 21 mm Hg or less, measured with Goldmann applanation tonometry. All subjects were of white ethnic origin and had a visual acuity of 20/40 or better. None had a significant history of ocular disease, including posterior segment eye diseases and corneal diseases, relatives in the first and/or second degree with glaucoma, systemic hypertension for which medication was used, diabetes mellitus, or any other systemic disease.

For SAP, appropriate near refractive correction was used. Reliability criteria applied were: (1) fixation losses less than or equal to 25% and (2) false-positive and false-negative response rates less than or equal to 20% for the Full Threshold test paradigm and less than or equal to 7% for the SITA-Standard test paradigm. In the patients with glaucoma, however, higher false-negative response rates were accepted. The mean period between perimetry and GDx VCC measurements was 0.8 ± 2.5 weeks \((SD; range, 0–12)\) and 12.2 ± 11.0 weeks \((range, 0–27)\) in patients with glaucoma and in healthy subjects, respectively.

The mean MD was −9.39 ± 7.45 dB \((SD)\) and 0.48 ± 1.22 dB for patients with glaucoma and healthy subjects, respectively. The mean age of the patients with glaucoma and the healthy subjects was 62 ± 10 years and 59 ± 13 years, respectively, which was not significantly different \((t-test, P = 0.10)\).

In the glaucoma group, 54 of the 101 subjects \((54\%)\) were men. Of the healthy subjects, 23 of the 47 \((49\%)\) were men. Fifty-two of the 101 eyes \((51\%)\) in the glaucoma group were right eyes; in the healthy group, 22 of the 47 eyes \((47\%)\) were right eyes.

In all subjects, both eyes were scanned with the GDx VCC, starting with the right eye. The spherical equivalent refractive error of each eye was entered into the software to allow the GDx VCC to focus properly on the retina. The patient’s face was gently placed into the face mask of the GDx VCC. To maintain the same orientation of the slow axes of the birefringent structures in the eye to that of the instrument’s compensator, the operator assisted patients in keeping their heads as vertical as possible during all measurements. The pupils of the patients were dilated, and the room lights were left on. For each scan, the operator aligned the instrument with the cornea and the sclera of the measured eye.

First, anterior segment birefringence was assessed for each eye of each subject with the method described by Zhou and Weinreb.31 To this end, the magnitude of the compensator of the GDx VCC was automatically set to zero, after which the fundus was scanned. The interaction between the birefringence of the radially oriented axons of the photoreceptors that constitute Henle’s fiber layer in the macula and the anterior segment birefringence resulted in a bow-tie pattern on the retardation image. A dedicated algorithm, incorporated into the GDx VCC software, determined the anterior segment birefringence \((Lb)\) as the sum of magnitude and axis) from this profile.

The software then used these calculations to automatically adjust the anterior segment compensator to each individual eye, and both eyes were scanned again with individualized compensation. Adequate compensation of anterior segment birefringence was verified subjectively by looking at the retardation pattern in the macular region that had to be uniformly weak with a cross- or donut-shaped pattern. The typical time to measure both eyes of a patient was 3 minutes. All scans had to be of high quality—that is, with a centered optic disc, well focused, even and just illuminated throughout the image, and without any motion artifacts. In addition, the measurements had to pass the five scan-quality checks that are automatically performed by the GDx VCC software.

The relationship between visual field test points and regions of the optic disc as described by Garway-Heath et al.32 was used to correlate the visual fields to the GDx VCC measurements. The 64 peripapillary sectors in the GDx VCC retardation image and the 52 visual field test points were grouped into six corresponding sectors \((Fig. 1)\). Because of the fixed dimensions of the exported sectors in the GDx VCC, the size and orientation of the six optic nerve head sectors differed slightly from those presented by Garway-Heath et al., but were consistent with their published relationship between optic nerve head location and visual field test points.32 The peripapillary measurement circle was divided into one 90° sector \((temporal [T])\), one 112.5° sector \((nasal [N])\), and four equally sized sectors of approximately 30° \((superotemporal [ST], superonasal [SN], inferotemporal [IT], and inferonasal [IN])\). The average retardation was calculated for each sector.

The differential light sensitivity in each visual field sector was also averaged and expressed in both the typically used decibel scale \((
\text{decibel-DLS})\) and in the unlogged DLS scale \((\text{unlogged-DLS})\). For the HFA, \(I_0 = 51.6\) asb and \(I_{\text{max}} = 10,000\) asb.

To measure the degree of association between SAP and GDx VCC measurements, we calculated Spearman’s rank correlation coefficient \((r_s)\) for each sector. Subsequently, the relationship between perimetry expressed in both the decibel-DLS and the unlogged-DLS scale and GDx VCC measurements was described with linear regression analysis.

RESULTS

The relationship between perimetry and GDx VCC measurements is graphically presented for all sectors in Figure 2. We found statistically significant correlations between standard
automated perimetry and GDx VCC measurements in patients with glaucoma ($P < 0.001$), in all sectors except the temporal one ($P = 0.059$), with r^2 of 0.77, 0.52, 0.46, 0.51, 0.38, and 0.19 for the sectors ST, SN, N, IN, IT, and T, respectively (Fig. 2, Table 1). In healthy subjects, no statistically significant correlations between perimetry and GDx VCC measurements were found in any sector ($P > 0.13$), except the superonasal one ($P = 0.012$; Fig. 2, Table 1).

When fit with a least-squares linear regression model, the relationship between decibel-DLS and RNFL retardation in healthy subjects and patients with glaucoma yielded R^2 values of 0.48, 0.42, 0.29, 0.37, and 0.35 for the sectors ST, SN, N, IN, and IT, respectively (for slopes, $P < 0.001$). For the unlogged-DLS, the R^2 values of the linear regression models were 0.52, 0.48, 0.26, 0.35, and 0.43, respectively (P of slopes < 0.001).
For the sectors ST, SN, and IT, linear regression analysis yielded statistically significant better fits for the unlogged-DLS scale than for the decibel-DLS scale (signed rank test, \(P = 0.011 \), \(P < 0.001 \), and \(P = 0.011 \), respectively). Conversely, for the sectors N and IN, linear regression analysis yielded statistically significant better fits for the decibel-DLS scale (signed rank test, \(P < 0.001 \) and \(P = 0.004 \), respectively). We did not fit the relationship between perimetry and GDx VCC measurements for the temporal sector with linear regression analysis, because they did not correlate.

DISCUSSION

We have shown a correlation between standard automated perimetry and GDx VCC measurements in patients with glaucoma.
Table 1. Correlation between SAP and GDx VCC Measurements

<table>
<thead>
<tr>
<th>Sector</th>
<th>Glaucoma Patients</th>
<th>Healthy Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_s</td>
<td>P</td>
</tr>
<tr>
<td>Superotemporal</td>
<td>0.77</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Superonasal</td>
<td>0.52</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Nasal</td>
<td>0.46</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Inferonasal</td>
<td>0.51</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Inferotemporal</td>
<td>0.38</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Temporal</td>
<td>0.19</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Degrees of association, measured with Spearman’s rank correlation coefficient (r_s, P), between SAP differential light sensitivity and GDx VCC measurements in patients with glaucoma ($n = 101$) and healthy subjects ($n = 47$) for the six sectors described in Figure 1.

... continued: For DLS values near zero, we still measured retardation equivalent to approximately 20 μm or more (Fig. 2). A possible explanation for this offset is that some RGCs had stopped functioning, but their axons were still present, thus exhibiting birefringence. Axons have been identified in the RNFL that have no demonstrable visual function. Another explanation is that we measured residual retardation from incomplete compensation of anterior segment birefringence or that we measured retardation induced by birefringent structures in the eye other than the RGC axons or anterior segment, as has been suggested by measurements with polarization sensitive optical coherence tomography (De Boer JF, et al. IOVS 2003;44:ARVO E-Abstract 3388). It is unclear whether an offset may have been present in the instrument itself. The offset may also have been influenced by variation in the positioning of the head during SAP. Some of the unexplained variation in the relationship between DLS and RNFL retardation may also be attributable to the reproducibility of measurements with SAP and SLP. For example, the variability in DLS within subjects has been shown to be substantial. Therefore, combining the results of several subsequent visual field tests may improve the relationship between DLS and RNFL retardation. To what extent the variability of GDx VCC measurements has influenced our results is unclear, because its reproducibility of measurements has not yet been assessed. Some variation in DLS may also have been due to age-related changes in the ocular media as well as age-related changes of the retina, other than loss of RGCs, and changes in the central nervous system.

For DLS values near zero, we still measured retardation equivalent to approximately 20 μm or more (Fig. 2). A possible explanation for this offset is that some RGCs had stopped functioning, but their axons were still present, thus exhibiting birefringence. Axons have been identified in the RNFL that have no demonstrable visual function. Another explanation is that we measured residual retardation from incomplete compensation of anterior segment birefringence or that we measured retardation induced by birefringent structures in the eye other than the RGC axons or anterior segment, as has been suggested by measurements with polarization sensitive optical coherence tomography (De Boer JF, et al. IOVS 2003;44:ARVO E-Abstract 3388). It is unclear whether an offset may have been present in the instrument itself. The offset may also have been influenced by variation in the positioning of the head during SAP. Some of the unexplained variation in the relationship between DLS and RNFL retardation may also be attributable to the reproducibility of measurements with SAP and SLP. For example, the variability in DLS within subjects has been shown to be substantial. Therefore, combining the results of several subsequent visual field tests may improve the relationship between DLS and RNFL retardation. To what extent the variability of GDx VCC measurements has influenced our results is unclear, because its reproducibility of measurements has not yet been assessed. Some variation in DLS may also have been due to age-related changes in the ocular media as well as age-related changes of the retina, other than loss of RGCs, and changes in the central nervous system.
for comparing structural and functional measurements than the standard dB scale, as suggested earlier by Garway-Heath et al.13 Clinically, however, the standard decibel scale may be more appropriate, because the variability of perimetric measurements between healthy subjects appears to be less when expressed in the decibel-DLS scale than in the unlogged-DLS scale (cf. Figs. 2A–F: right and left images). This apparently improved variability may, however, lower its sensitivity to detecting change, notably at the higher end of the decibel-DLS scale. Such change might, as stated earlier, be better monitored with SLP than with SAP.

Acknowledgments

The authors thank Paul G. H. Mulder, PhD (Department of Epidemiology & Biostatistics, Erasmus MC, Rotterdam, The Netherlands) for valuable discussions.

References

2. Kriegner-Baumrind LA, Quigley HA, Pease ME, Kriegner DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741–748.