Incorrect Citation

In their letter in the December 2010 issue, “Author Response: Bevacizumab Suppression of Establishment of Micrometastases in Experimental Ocular Melanoma” Yang et al.1 state that “bevacizumab has been used in mouse models of choroidal neovascularization” and quote Hua et al.,2 for which I am the corresponding author. This is an incorrect and misleading reference. We certainly did not show that bevacizumab affected mouse models of choroidal neovascularization, only that it inhibited human VEGF165-mediated migration of endothelial cells at the same dose-response as VEGF165b.

David O. Bates

Microvascular Research Laboratories, School of Veterinary Sciences, Bristol, United Kingdom.
E-mail: dave.bates@bris.ac.uk

References


Citation: Invest Ophthalmol Vis Sci. 2011;52:4368. doi:10.1167/iovs.11-7310

Author Response: Incorrect Citation

We1 thank David Bates for pointing out that Hua et al.2 showed that recombinant human VEGF165b inhibits experimental murine choroidal neovascularization, but did not show an effect of bevacizumab on mouse models of choroidal neovascularization. We do note that bevacizumab has an effect on reducing corneal neovascularization in the mouse eye.3,4 It appears that the route and timing of administration play a role in this effect. In our model, intracameral bevacizumab reduced the number of hepatic micrometastases from ocular melanoma. We cannot exclude that this may have been due to selective inhibition of intraocular melanoma cells rather than an antiangiogenic effect.

Hua Yang
Hans E. Grossniklaus

Department of Ophthalmology, Emory University, Atlanta, Georgia.
E-mail: ophtheg@emory.edu

References


Citation: Invest Ophthalmol Vis Sci. 2011;52:4368. doi:10.1167/iovs.11-7341