The human cornea is nourished and supplied anteriorly with oxygen by the environment. Contact lenses with low oxygen transmissibility (i.e., D_{pk}/t_L, where D_{pk} is the lens oxygen permeability and t_L is the lens thickness) impede environmental oxygen supply and may cause corneal edema, acidosis, and various adverse events associated with oxygen deficiency.4–6 Quantifying the critical oxygen demand of the human cornea has, thus, received decades of attention and some debate.7–27 Most efforts focus on mathematical modeling.1–3,7,24,28–32 but—with some exceptions1–3—do not incorporate the metabolic processes of the human cornea. Consequently, in vivo experimental methods to ascertain the corneal oxygen uptake have received attention.33–36 The presence of a SCL demands a slightly more involved mathematical description, but the calculation of oxygen uptake remains straightforward and consistent with previous modeling efforts. The proposed interpretation scheme is applied to newly measured POS data for 10 human subjects with 12 different commercial SCLs under open-eye conditions. Our simple, yet rigorous, procedure provides a reliable tool for in vivo corneal-oxygen uptake, soft contact lens, polarographic oxygen sensor, long-time analysis, corneal oxygenation.
assessment of oxygen uptake for both previous data in the literature and for those newly obtained.

METHODS

Experiment

A Clark-type micro-polarographic oxygen sensor (POS; Radiometer E5047/0 and Radiometer Amplifier PHM 73; Radiometer, Copenhagen, Denmark) linked to a personal computer was used to quantify the corneal-oxygen-uptake rate of 10 subjects. The supplied probe was equipped with a 30-μm diameter platinum cathode and an 18-μm thick polymer membrane. The sensor was calibrated in distilled/deionized water (Milli-Q Millipore Corp., Billerica, MA) at 36°C saturated with air (155 mm Hg O₂) and with pure nitrogen (0 mm Hg O₂) to convert probe readings to oxygen tension. The probe was routinely immersed in a nitrogen-saturated aqueous solution to prevent environmental oxygen uptake (i.e., oxygen flux) into human corneas during contact-lens wear, \(f_0(0) \), and to compare those values with the previously determined values without contact lens wear, \(f_0(0) \), on the same subjects. Units chosen for oxygen uptake are \(\mu L \, O_2/(STP)/cm^2/h \).

Oxygen Transport

Because the measured data correspond to the Clark microelectrode applied directly onto the cornea after lens removal, we extend our no-lens analysis\(^{40} \) with a minor change in the initial steady-state oxygen profile in the cornea. Figure 1 shows expected transient oxygen partial-pressure profiles upon placing the Clark electrode probe onto the bare cornea immediately after SCL wear. Since the lens is absent, only the probe resting against the cornea is depicted. As in the no-lens analysis,\(^{40} \) we adopt a one-dimensional analysis and neglect axial diffusive resistance of the thin electrolyte film between the cornea and the membrane.

![Figure 1](https://iovs.arvojournals.org/doi/fig/10.1167/iovs.13-15111)

TABLE 1. Contact Lens Parameters

<table>
<thead>
<tr>
<th>Contact Lens Name</th>
<th>Oxygen Diffusivity, (D_L) (\times 10^{-7} , cm^2/s^*)</th>
<th>Oxygen Partition Coefficient, (k_L) (\times 10^{-3} , ml , O_2 , (STP)/ml , mm , Hg)</th>
<th>Oxygen Permeability, (D_Lk_L), Barrer†</th>
<th>Lens Thickness, (L_t), μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuvue 2</td>
<td>3.2</td>
<td>0.88</td>
<td>28</td>
<td>74 (≈3.00 D)</td>
</tr>
<tr>
<td>Focus Night & Day</td>
<td>8.4</td>
<td>1.67</td>
<td>140</td>
<td>95 (≈3.00 DS), 137 (≈6.00 DS)</td>
</tr>
<tr>
<td>O₂ Optix</td>
<td>5.8</td>
<td>1.9</td>
<td>110</td>
<td>88 (≈3.00 D), 108 (≈6.00 DS)</td>
</tr>
<tr>
<td>PureVision</td>
<td>6.0</td>
<td>1.52</td>
<td>91</td>
<td>120 (≈3.00 D), 126 (≈6.00 DS)</td>
</tr>
<tr>
<td>Acuvue Oasys</td>
<td>4.5</td>
<td>2.29</td>
<td>103</td>
<td>78 (≈3.00 D)</td>
</tr>
<tr>
<td>Acuvue Advance</td>
<td>4.2</td>
<td>1.43</td>
<td>90</td>
<td>92 (≈3.00 D), 129 (≈6.00 DS)</td>
</tr>
<tr>
<td>Acuvue Moist</td>
<td>5.2‡</td>
<td>0.88</td>
<td>28</td>
<td>84 (≈3.00 D)</td>
</tr>
<tr>
<td>CibaSoft</td>
<td>0.7§</td>
<td>1.14</td>
<td>8</td>
<td>125 (≈6.00 DS)</td>
</tr>
</tbody>
</table>

* Diffusivity values obtained from Chhabra et al.\(^66 \) unless otherwise stated.
† Estimated from the oxygen diffusivity and partition coefficient in Acuvue 2, a similar material.
‡ Estimated from the oxygen diffusivity and partition coefficient in Biomedics 38, a similar material.
§ Estimated from the oxygen diffusivity and partition coefficient in Acuvue 2, a similar material.

* Diffusivity values obtained from Chhabra et al.\(^66 \) unless otherwise stated.
† Estimated from the oxygen diffusivity and partition coefficient in Acuvue 2, a similar material.
‡ Estimated from the oxygen diffusivity and partition coefficient in Biomedics 38, a similar material.
cathode and the covering membrane and that of the thin tear film between the covering membrane and the cornea. In Figure 1, \(x = -L_m \) corresponds to the anterior membrane/electrode interface, \(x = 0 \) corresponds to the posterior membrane/anterior cornea interface, and \(x = L \) specifies the posterior cornea/anterior chamber interface. Oxygen concentration at the electrode surface (\(x = -L_m \)) is zero because of the limiting-current condition.\(^{36,66}\) Because the cathode surface consumes oxygen, a flux of oxygen is directed out of the membrane toward the electrode surface. This is illustrated in Figure 1 by the positive slope of all tension profiles at \(x = -L_m \). This observation contrasts with that of Rasson and Fatt\(^ {37,39} \) who assumed that oxygen initially in the membrane was directed only into the SCL with no oxygen flux into the electrode. Figure 1 differs somewhat from the corresponding Figure 1 in Takatori et al.\(^ {40} \) in that the initial steady-state tension profile in the cornea, \(P(0,x) \), reflects the cornea during contact-lens wear. For this reason, there is a discontinuity in the membrane tension at time zero between \(P_m(0,x) = 155 \, \text{mm Hg} \) and that at the corneal anterior surface, \(P(0,0) \). This discontinuity begins to vanish immediately after probe emplacement.

Dashed profiles in Figure 1 correspond to very early time when the POS is first positioned onto the cornea following wear of the contact lens. In this time frame, oxygen is supplied from the membrane both to the cornea raising oxygen locally in the cornea and to the electrode where oxygen is reduced to hydroxide ions.\(^ {40} \) Here, the POS signal does not correspond to the oxygen tension at the membrane/cornea interface because the tension profile in the membrane is not linear. Oxygen tension is measured only after the membrane achieves pseudo-steady state, or for times exceeding \(L_m/D_m \), where \(D_m \) is the oxygen diffusivity in the membrane. Once the profiles in the membrane become linear (solid lines in Fig. 1), the POS signal correctly reflects the oxygen tension at the corneal surface, shown as filled circles at \(x = 0 \) in Figure 1. For the POS used in our experiments, membrane pseudo-steady state is achieved in approximately 20 s.\(^ {40} \) Thus, beyond 20 s—depending on membrane material and thickness—oxygen-tension profiles in the membrane, \(P_m(0,x) \), are linear starting from zero at membrane/electrode surface (\(x = -L_m \)). Eventually, the net flux of oxygen is directed into the membrane toward the microelectrode and is supplied by the cornea (see Fig. 1). The cornea then acts as a source of oxygen for the electrode.

A maximum tension appears in the cornea after membrane pseudo-steady state is established. Farther into the cornea (near \(x = 0 \)), oxygen also diffuses into the cornea due to metabolic oxygen demand. The maximum in the corneal-tension profile moves inward in time, ultimately merging into a monotonic decline from the anterior chamber to the membrane. Finally, at a terminal steady-state profile, labeled as \(P(\infty,x) \) in Figure 1, is reached where the anterior chamber supplies oxygen to both the microelectrode and the cornea.

We seek the magnitude of \(J_o(0) \), the flux of oxygen into the anterior cornea corresponding to that established during contact-lens wear before the microelectrode was emplaced. \(J_o(0) \) is also equivalent to the steady oxygen flux through the SCL and into the cornea before probe insertion. Modeling efforts indicate that during contact-lens wear, the cornea also receives some oxygen from the anterior chamber.\(^ {1,3,5,6,7} \) \(J_o(0) \), however, reflects only oxygen supply to the epithelium and to the anterior sections of the stroma. After membrane pseudo-steady state is achieved, the POS signal is linearly proportional to the oxygen tension at the corneal surface, \(P(t,0) \).\(^ {3,40} \) As in our previous effort,\(^ {40} \) we relate \(P(t,0) \) to the oxygen uptake into the cornea at \(x = 0 \).

Filled circles in Figure 1 at \(x = 0 \) illustrate how the measured oxygen tensions decline in time starting from \(P_o(0) = 155 \, \text{mm Hg} \) (open eye) down to the final steady state of \(P(\infty,0) \), a value much less than \(P_{AC} = 24 \, \text{mm Hg} \) (anterior chamber). A reactive-diffusion model is required to convert the measured transient decline of \(P(t,0) \) to oxygen uptake of the cornea, \(J_o(t,0) \). A brief summary of our interpretation scheme is outlined below.

Oxygen Uptake

Transient diffusion of oxygen through the cornea and the covering membrane to the POS electrode has been analyzed previously.\(^ {40} \) The distinction here is that the steady profile of oxygen in the cornea before POS placement (see curve \(P(0,x) \) in Fig. 1) is that corresponding to SCL wear in the environment rather than to that of a bare cornea exposed to the environment. As shown in Appendix A, the oxygen-tension profile across an SCL is linear following Fick’s second law. The tension profile of the contact lens-covered cornea also follows Fick’s second law, but now including a first-order reactive loss of oxygen (see Equation 6 in Takatori et al.\(^ {45} \)). The resulting steady tension profiles in the SCL and in the cornea are given by Equations A1 and A2. The desired steady oxygen flux through the lens and into the cornea follows directly as described in Appendix A:

\[
J_o(0) = \frac{\varphi}{L} \left[\frac{\cosh \varphi - P_{AC}/P_o}{\sinh \varphi} \right] \frac{D_k}{L} \frac{P_o}{P_o} \tag{1}
\]

where \(D \) is the average diffusivity of oxygen in the cornea; \(k \) is the average partition coefficient of oxygen in the cornea (i.e., the product \(D_k \) is the corneal oxygen permeability); and \(L \) is the average corneal thickness. \(D \) and \(k \) are taken here as characteristic of the stroma,\(^ {1,3,5,6} \) and are reported in Table 2 along with \(L \), and membrane properties.\(^ {66,69} \) \(P_o(155 \, \text{mm Hg}) \) is the open-eye oxygen tension in the environment, and \(P_{AC} \) (24 mm Hg) is the oxygen tension at the anterior chamber. Oxygen tensions at the endothelium/anterior chamber interface may take on much lower values during contact-lens wear than that listed in Figure 1 with no impact on our results. \(\varphi^2 = k L^2 / D_k \) is the square of the Thiele modulus\(^ {71} \) or the Damköhler number,\(^ {72} \) with \(k \) the first-order rate constant or the zero-tension slope of the Monod rate expression for oxygen consumption.\(^ {40,67} \) The parameter \(\beta_1 = D_k L^2 / (D_k L) \) is the ratio of diffusion resistance of oxygen in the SCL to that in the cornea. Values for the SCL oxygen diffusivities, \(D_k \), and partition coefficients, \(k_L \), are from Chhabra et al.,\(^ {66} \) as listed in Table 2. Thus, the only unknown parameter in Equation 1 is the first-order metabolic consumption rate constant, \(k \) (embedded in the Thiele modulus). Once \(k \) is obtained for each subject with each lens, in vivo oxygen uptake by the cornea during contact-lens wear can be determined. Equation 1 applies also to no-contact lens wear. In the limit of zero lens thickness, it correctly reduces to the previous result that\(^ {40} \)

\[
J_o(0) = \frac{\varphi}{L} \left[\frac{\cosh \varphi - P_{AC}/P_o}{\sinh \varphi} \right] \frac{D_k}{L} \frac{P_o}{P_o} \tag{2}
\]

Comparison of Equations 1 and 2 shows that SCL wear reduces oxygen uptake into the cornea so that \(J_o(0)/J_o(0) < 1 \). High SCL oxygen transmissibility (i.e., a large value of \(D_k k_L L \)), reduces the parameter \(\beta_1 \) toward zero resulting in unimpeded oxygen flow into the cornea.

To obtain the metabolic consumption rate constant \(k \) for a particular subject, tension data from the POS must be analyzed. Because we slide off the SCL before measurement and consider only long-time data, the analysis is identical to that in our previous effort.\(^ {40} \) Measured transient tensions are graphed on a semilogarithmic scale versus time, such as shown in Figure 2. The experiment must be carried out long enough so that the graph becomes linear in time:
TABLE 2. Physical Parameters

<table>
<thead>
<tr>
<th>Parameter (Units)</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_m (cm2/s)*</td>
<td>2.44×10^{-7}</td>
<td>Kroschwitz & Seidell56, Jensen et al.69</td>
</tr>
<tr>
<td>D (cm2/s)†</td>
<td>1.28×10^{-5}</td>
<td>Chhabra et al.2</td>
</tr>
<tr>
<td>k_m (mL(STP)/(mL mm Hg))</td>
<td>6.97×10^{-5}</td>
<td>Jauregui & Fatt38</td>
</tr>
<tr>
<td>k (mL(STP)/(mL mm Hg))</td>
<td>2.30×10^{-5}</td>
<td>Chhabra46</td>
</tr>
<tr>
<td>L_m (µm)</td>
<td>18</td>
<td>Radiometer</td>
</tr>
<tr>
<td>L (µm)</td>
<td>480</td>
<td>Chhabra et al.2</td>
</tr>
</tbody>
</table>

* Determined from measured oxygen permeability in the polymer membrane ($D_m k_m = 1.7$ Barrer68,69) after division by the partition coefficient $k_m = 6.97 \times 10^{-5}$ mL (STP)/(mL mm Hg)38

† Determined from oxygen permeability in the stroma ($Dk = 29.5$ Barrer2) after division by the partition coefficient $k = 2.3 \times 10^{-5}$ mL (STP)/(mL mm Hg)66

\[\ln P(t, 0) = \ln A_1 - a_1 t \] (3)

with negative slope a_1, as illustrated by the solid line in Figure 2. With a_1 experimentally determined, the first-order metabolic rate constant follows as

\[k_1 k_k^{-1} = a_1 - b_1^2 D/L^2 \] (4)

where b_1 is established by trial and error from

\[\tan b_1 + \beta b_1 = 0 \] (5)

and $\beta = D k_L/(D_m k_m L)$ is the ratio of diffusion resistance in the membrane to that in the cornea. The specific POS used in this study is identical to that used previously so that the values of β (0.649) and b_1 (2.18) are available.40 This exercise determines k_1 for the individual subject under study and, hence, ascertains oxygen uptake from Equation 1 (or Equation 2 in the case of no-contact lens wear). Calculation of corneal oxygen uptake from our experimental-POS tension data and Equation 1 prove insensitive to the exact choice of P_{EC}. Values of the posterior-endothelium oxygen tension as low as 5 mm Hg after $f_o(0)$ by less than 1%. This result makes physical sense because almost all of the oxygen supply to the cornea originates at the anterior surface, not at the anterior chamber.

It is possible to place the POS directly onto the SCL without removing the lens and to perform the measurement. In this case, however, it takes longer both to reach a pseudo-steady state in the membrane and to obtain the long-time exponential phase of Equation 3 in the cornea. As importantly, a more involved analysis is required. For completeness, we record this analysis online in Supplementary Appendices B and C.

RESULTS AND DISCUSSION

POS measurements for two human subjects wearing Acuvue 2 lenses are shown in Figure 2 following lens slide-off on semilogarithmic scales. Corresponding best eye-fit straight lines at later time are also shown in Figure 2. As demanded by Equation 3, semilogarithmic linear behavior emerges at later times. Table 3 presents our results during open eye for 12 SCLs averaged over a single measurement for each lens on each of 10 subjects. Average semilogarithmic slopes, a_1, with error limits at 95% confidence, calculated metabolic rate constants, expressed as k_1/k, and oxygen uptakes, $f_o(0)$ in µL(STP)/cm2/h are summarized. Error limits for $f_o(0)$ reflect the 95% Student’s t-test confidence limits in the measured slopes a_1.

Comparison of the oxygen-consumption rate constants, k_1 (i.e., reported as $k_1 k_k^{-1}$), in Table 3 and with those in Table 2 of our earlier work46 show minor variations among subjects both with and without SCL wear. Further, k_1 values are very close in magnitude independent of whether or not a SCL is worn. Since oxygen-metabolism kinetics is a property of the human cornea
and not of the lens, this result strengthens the validity of our analysis.

Table 3 further reveals that thicker lenses of the same material result in lower uptake, as expected from the relative magnitudes of the driving force for oxygen diffusion and the resistance embodied in lens transmissibility. For identical lens materials, an increased thickness leads to an increased transport resistance and, accordingly, to lower oxygen uptake into the cornea. In Table 3, all thicker +6.00 DS lenses exhibit lower average oxygen flux than those for the corresponding thinner −3.00 DS lenses.

Anterior oxygen uptake rates in Table 3 vary from 2 to 10 \(\mu L/(STP)/cm^2/h \) at open eye. No-lens uptake rates are around 9 to 13 \(\mu L/(STP)/cm^2/h \) at open eye. \(^{40}\) High oxygen permeability lenses in Table 3 evidence uptake rates of almost 10 to 13 \(\mu L/(STP)/cm^2/h \), approaching those of the no-lens situation. The traditional analysis of Fatt and coworkers \(^{37–39}\) applied to our POS data in Table 3 results in corneal-oxygen uptake values that are 3 to 5 times smaller. Variability among the limited number of subjects and SCLs is not large for both interpretation schemes.

Although corneal oxygen uptake with SCL wear in Table 3 is lower than that without contact-lens wear reported in Table 2 of our earlier work, \(^{40}\) the difference diminishes as lens transmissibility, \(D_k/L_e \), increases. This point is emphasized in Figure 3 that graphs oxygen uptake into the cornea with lens wear, \(J_*(0) \), relative to that without lens wear, \(J_0(0) \), as a function of SCL transmissibility, \(D_k/L_e \). Oxygen-uptake fraction is shown as filled circles with error bars. Each datum is an average of \(J_*(0) \) over 10 subjects while the no-lens wear (baseline) oxygen flux was set at \(J_0(0) = 11.3 \mu L/cm^2/h \), the average no-lens uptake over the same 10 subjects. \(^{40}\) The solid line corresponds to an available model.\(^1\) The two subject-specific parameters in the model, the maximum Monod oxygen consumption rate and the oxygen permeability of the cornea, were established to yield \(J_0(0) = 11.3 \mu L/cm^2/h \) during no-lens wear. Lens permeability in the model calculations was then varied from 0 to 200 Barrer to produce the solid curve. Agreement between measured oxygen-uptake reduction due to SCL wear and that predicted is good showing the validity of the theoretical model and the validity of the POS measurement/interpretation procedure. Both theory and POS experiment reveal that full oxygenation of the human eye, \(11.3 \mu L/cm^2/h \) for the 10 subjects studied, is reached only asymptotically. That is, very high lens transmissibility is required before the lens no longer impedes oxygen transport. Conversely, 90% anterior corneal oxygenation is achieved with a lens transmissibility of 150 hBarrer/cm.

In vivo no-lens uptake rates using a POS with our proposed interpretation scheme are around 9 to 13 \(\mu L/(STP)/cm^2/h \) at open eye. \(^{40}\) With SCL wear, corneal-oxygen flux falls to 2 to 10 \(\mu L/(STP)/cm^2/h \) depending on lens transmissibility. Thus, although our subject size is small, we experimentally verify that an SCL impedes oxygen diffusion into the cornea and by how much. Previous corneal oxygen uptake based on the interpretation scheme of Fatt and coworkers \(^{37–39}\) are inaccurate because the POS-covering membrane is assumed to be well mixed with no supply of oxygen to the Clark electrode.\(^73\) Also, Figure 2 reveals that POS tensions do not initially decay linearly in time on a semilogarithmic graph, as assumed in the Fatt analysis.

Our new POS data for the effect of SCLs on human-corneal oxygenation confirms quantitatively the role of lens transmissibility in controlling the amount of oxygen the cornea receives. Agreement between theory and experiment is good.

Table 3. Open-Eye Corneal Oxygen Uptake During SCL Wear

<table>
<thead>
<tr>
<th>Contact Lens</th>
<th>(\alpha_1, \text{s}^{-1})</th>
<th>(k_1 k^{-1}, \text{s}^{-1})</th>
<th>(J_0(0), \mu L/cm^2/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acuvue 2, −3.00 D</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>7.2 ± 0.5</td>
</tr>
<tr>
<td>Focus Night & Day, −3.00 DS</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>10.8 ± 0.8</td>
</tr>
<tr>
<td>Focus Night & Day, +6.00 DS</td>
<td>0.09 ± 0.07</td>
<td>0.06 ± 0.01</td>
<td>9.1 ± 0.5</td>
</tr>
<tr>
<td>O₂ Optix, −3.00 DS</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>9.4 ± 1.0</td>
</tr>
<tr>
<td>O₂ Optix, +6.00 DS</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>9.2 ± 0.6</td>
</tr>
<tr>
<td>PureVision, −3.00 DS</td>
<td>0.09 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>8.5 ± 1.5</td>
</tr>
<tr>
<td>PureVision, +6.00 DS</td>
<td>0.08 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>7.8 ± 2</td>
</tr>
<tr>
<td>Acuvue Oasys, −3.00 DS</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>9.7 ± 0.5</td>
</tr>
<tr>
<td>Acuvue Advance, −3.00 DS</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>8.6 ± 0.4</td>
</tr>
<tr>
<td>Acuvue Advance, +6.00 DS</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>7.8 ± 0.8</td>
</tr>
<tr>
<td>Acuvue Moist, −3.00 D</td>
<td>0.09 ± 0.01</td>
<td>0.06 ± 0.01</td>
<td>6.9 ± 0.6</td>
</tr>
<tr>
<td>CibaSoft, +6.00 DS</td>
<td>0.12 ± 0.01</td>
<td>0.09 ± 0.01</td>
<td>2.8 ± 0.04</td>
</tr>
</tbody>
</table>

* All error estimates are based on 95% confidence in a Student’s t-test.
† Calculated from Equation 1 using \(P_o = 155 \text{ mm Hg} \).
In Vivo Corneal Oxygen Uptake

This finding confirms the validity of the POS experimental data and protocol. Although POS measurements can be taken directly on the SCL during wear, we recommend lens removal because the analysis is straightforward and because pseudo-steady state is achieved quickly allowing subject comfort. We also recommend that the POS membrane not be saturated at environmental oxygen tension (i.e., 155 mm Hg) but closer to that of the steady value at the anterior cornea surface during SCL wear (i.e., at P(0,0) in Fig. 1) since the time to achieve pseudo-steady state is reduced. An estimated value for P(0,0) is available from Equation A2 in Appendix A.

We recommend adoption of our lens-slide-off POS experiment and analysis in future measurements of the effects of contact-lens wear on corneal oxygenation.

Acknowledgments

Disclosure: S.C. Takatori, None; P. Lazon de la Jara, Australian Government Cooperative Research Centre Program (F); B. Holden, Australian Government Cooperative Research Centre Program (F); K. Ehrmann, Australian Government Cooperative Research Centre Program (F); A. Ho, Australian Government Cooperative Research Centre Program (F); C.J. Radke, None

References

In Vivo Corneal Oxygen Uptake

51. Lazon de la Jara P, Holden BA, Terry R, La Hood D, Ehrmann K. Oxygen levels and oxygen flux with silicone hydrogel contact lenses under open and closed eye conditions. Poster presented at: the American Academy of Optometry (AAO) meeting; December 7–9, 2006; Denver, CO.

APPENDIX A. STEADY TENSION PROFILE WITH SCL WEAR

We desire in vivo oxygen uptake by the human cornea during SCL wear or the steady flux of oxygen through the lens and into the cornea just before POS placement onto the eye—i.e., $J_0(0)$. Solutions of the steady-state forms of Equation 6 in Takatori et al. without the reaction term for the lens and with reactive loss give the initial steady oxygen profiles

$$P_0(0,x) = P_{AC} \left[1 - \left(\frac{P_0}{P_{AC}} \right) \frac{\cosh \phi}{\cosh \phi + \left(\beta_1 \phi \right)^{-1} \sinh \phi} \right]^{x/L_L} + \frac{P_{AC}}{\cosh \phi + \left(\beta_1 \phi \right)^{-1} \sinh \phi}$$ \hspace{0.5cm} (A1)

and

$$P_0(x,0) = P_{AC} \left[1 + \left(\beta_1 \phi \right)^{-1} \left(\frac{P_0}{P_{AC}} \right) \frac{\cosh \phi}{\cosh \phi + \left(\beta_1 \phi \right)^{-1} \sinh \phi} \right] \cosh(\phi x/L)$$ \hspace{0.5cm} (A2)

where $P_0(0,x)$ and $P_0(x,0)$ are the steady-state profiles in the SCL and cornea, respectively, $\sigma^2 = k L^2/Dk$ is the square of the Thiele modulus, and $\beta_1 = DLk_L/Dk_L$ is the ratio of diffusion resistance in the SCL to that in the cornea.

Since oxygen flux at steady state is identical through the lens and into the cornea, we have that

$$J_0(0) = -DK(\partial P(0,0)/\partial x) = J_0(-L_L) = -DK_L(\partial P(0,0)/\partial x)$$ \hspace{0.5cm} (A3)

Thus, oxygen uptake follows immediately upon differentiation of Equations A1 or A2 as reported in Equation 1 of the text.