Functional and Morphologic Analysis of the Fluid-Conducting Meshwork in Xenografted Cutaneous and Primary Uveal Melanoma

Ruud Clarijs, Marcory van Dijk, Dirk J. Ruiter, and Robert M. W. de Waal

PURPOSE. In primary uveal and cutaneous melanoma lesions, extracellular matrix (ECM) is often deposited in arcs, loops, and network patterns. Based on prognostic relevance, these patterns appear to play a significant role in facilitating metastasis. It has been demonstrated that these patterns were capable of transmitting fluid. The current study was undertaken to elucidate further the functional role of these patterns in tumor perfusion and to examine the composition of the patterns by immunohistochemistry.

METHODS. To study the role of these patterns in perfusion, fluorochrome-labeled bovine serum albumin, bovine insulin, and dextrans of different molecular sizes were injected intravenously into nude mice bearing subcutaneous human cutaneous melanoma xenografts. Distribution of the human melanoma cells and murine host cells was analyzed by DNA in situ hybridization. To elucidate the composition of these patterns, human uveal melanoma tissues were analyzed for expression of ECM components by immunohistochemistry.

RESULTS. Small molecules (Stokes’ radius <4.4 nm) crossed the vessel wall and spread along the ECM patterns within 2 to 10 minutes, whereas larger molecules (Stokes’ radius ~5.8 nm) required 30 to 45 minutes to enter. Murine host cells were found exclusively in the ECM pattern compartment. In primary uveal melanoma, different types of collagen, ECM-associated heparan sulfate proteoglycans, and different types of cells were present in the patterns.

CONCLUSIONS. The data suggest that the ECM deposited as arcs, loops, and network patterns, accommodate the transport of plasma-derived molecules, (e.g., nutrients), to the tumor lesion, thus enhancing tumor growth and progression, and facilitating infiltration of tumor tissue by host-derived cells. (Invest Ophthalmol Vis Sci. 2005;46:3013–3020) DOI:10.1167/iovs.04-0876

In both primary uveal and cutaneous melanoma, nine different patterns of extracellular matrix (ECM) deposition have been identified by conventional periodic acid-Schiff (PAS) staining. Analysis of prognostic relevance indicated that the PAS-positive arcs, loops, and network patterns are associated with tumor progression and subsequent poor survival. A few years ago, it was suggested that these patterns contained or represented blood-conducting channels lined by tumor cells instead of endothelial cells (vasculogenic mimicry). Since then, findings in several studies have suggested that vasculogenic mimicry occurs in different tumor types and has identified the factors causing this phenomenon (for review, see Ref. 7).

Recent studies have reported the presence of laminin and collagen I and VI in and different types of cells (including endothelial cells and macrophages) along the PAS-positive arcs, loops, and network patterns. Macrophages in malignant tumors, including uveal melanoma, have been associated with adverse prognosis, although their mechanism of action is unknown. Heparan sulfate proteoglycans (HSPGs) and other structural proteins, which are key components of the ECM (such as collagen III and V), may also be of significance in tumor growth and metastasis.

In a recent study, we reassessed the nature of the PAS-positive patterns in primary uveal and xenografted melanoma. We and others have suggested that a fluid stream may be present in these ECM depositions, apart from the blood circulation. This fluid-conducting meshwork was found in areas with a relatively low vascular density but without evident necrosis, indicating that it may play a role in tumor cell nutrition. Indeed, the importance of this meshwork was recently emphasized by Hendrix et al. If this meshwork is involved in tumor cell nutrition, the questions arises of which nutrients are delivered to the tumor cells. In our previous study, we showed that bovine serum albumin is capable of entering the patterns in less than 1 hour. Indeed, these data may indicate that small-sized molecules (such as glucose and oxygen) are capable of leaving the blood vessels and being transported through the patterns within a few minutes, thereby contributing to tumor growth and metastasis.

To elucidate the properties of the ECM arcs, loops, and network patterns, we have now analyzed their ability to transport tracer molecules, studied details of their composition, and determined the presence of associated cell types in xenografted cutaneous melanoma and in primary uveal melanoma. For this purpose, we selected several tracers with a range of molecular sizes—the smallest being representative of small nutrient molecules (expected to distribute widely along the patterns after a short time interval), the middle sizes being indicative of endothelial permeability changes (expected to distribute along the patterns after a larger time interval), and the largest assumed to be purely intravascular (i.e., not entering the patterns outside the vasculature and the vascular channels, if present).
Materials and Methods

Uveal Melanoma

Frozen specimens of six uveal melanoma lesions were obtained from the pathology archives of the University Medical Center Nijmegen where they had been stored at −130°C. Tissues were used according to the guidelines of Dutch legislation, and our work adhered the tenets of the Declaration of Helsinki. All specimens were stained by Azan histochemistry for visualization of the ECM patterns. All antibodies were applied in uveal melanoma except for Mec 7.46, which was applied in xenografted melanoma.

Primary Antibodies Used for Immunohistochemistry

<table>
<thead>
<tr>
<th>Primary Antibody</th>
<th>Marker Specificity</th>
<th>Source of Antibody/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mec 7.46</td>
<td>CD31 (endothelial cells)</td>
<td>Hycult Biotechnology, Uden, The Netherlands</td>
</tr>
<tr>
<td>Anti-laminin<sup>a</sup></td>
<td>Laminin</td>
<td>Dr. J. van den Born, Department of Nephrology, UMC Nijmegen, The Netherlands</td>
</tr>
<tr>
<td>3G10</td>
<td>Pan-HSPG</td>
<td>21</td>
</tr>
<tr>
<td>JM403</td>
<td>Heparan sulfate side chains</td>
<td>22</td>
</tr>
<tr>
<td>10H4</td>
<td>Syndecan-2</td>
<td>23, 24</td>
</tr>
<tr>
<td>2E9</td>
<td>Syndecan-1 and -3</td>
<td>24, 25</td>
</tr>
<tr>
<td>1C7</td>
<td>Syndecan-3</td>
<td>24, 25</td>
</tr>
<tr>
<td>S1</td>
<td>Glypican-1</td>
<td>26, 27</td>
</tr>
<tr>
<td>JM72</td>
<td>Agrin</td>
<td>28</td>
</tr>
<tr>
<td>1948</td>
<td>Perlecan</td>
<td>Chemicon International Inc, Temecula, CA</td>
</tr>
<tr>
<td>Anti-all hu XVIII</td>
<td>Both collagen XVII</td>
<td>29</td>
</tr>
<tr>
<td>(QH18.18)</td>
<td>Variants</td>
<td>30</td>
</tr>
<tr>
<td>L26</td>
<td>CD32 (B-lymphocytes)</td>
<td>DAKO, Glostrup, Denmark</td>
</tr>
<tr>
<td>Anti-icu-4</td>
<td>CD3 (T-lymphocytes)</td>
<td>BD Biosciences, San Jose, CA</td>
</tr>
<tr>
<td>Anti-collagen I<sup>a</sup></td>
<td>Collagen I</td>
<td>Monosan, Uden, The Netherlands</td>
</tr>
<tr>
<td>Anti-collagen III<sup>a</sup></td>
<td>Collagen III</td>
<td>Monosan</td>
</tr>
<tr>
<td>Anti-collagen IV</td>
<td>Collagen IV</td>
<td>Sigma-Aldrich, Brunsschw, Amsterdam, The Netherlands</td>
</tr>
<tr>
<td>Anti-collagen V</td>
<td>Collagen V</td>
<td>Monosan</td>
</tr>
<tr>
<td>HHF35</td>
<td>Isotypes of actin (α, γ) (smooth muscle cells, pericytes)</td>
<td>Dako, 51, 52</td>
</tr>
</tbody>
</table>

^a polyclonal antibodies

Xenografts in Nude Mice

Because there are close parallels in PAS and Azan histochemistry of the arcs, loops, and network patterns in cutaneous Mel57-xenografts and primary uveal melanoma, the human cutaneous melanoma cell line Mel57¹⁸ was cultured as previously described. For the induction of tumor growth, 2.5 × 10⁶ cells were injected subcutaneously into the flanks of BALB/c nu/nu mice (n = 76). Subcutaneous xenografts developed in all mice. Tumor volumes were estimated by multiplying length, width, and height. When the tumors reached sizes between 100 and 700 mm³, all mice were estimated by multiplying length, width, and height. When they had been stored at −130°C. Tissues were used according to the guidelines of Dutch legislation, and our work adhered the tenets of the Declaration of Helsinki. All specimens were stained by Azan histochemistry for visualization of the ECM patterns. All antibodies were applied in uveal melanoma except for Mec 7.46, which was applied in xenografted melanoma.

Tracers

Tracers with a broad range of molecular size were selected. A 3% (wt/vol) solution of bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC-BSA, molecular mass approximately 68 kDa; 12 moles FITC/mole BSA), with sulforhodamine 101 acid chloride (Texas red-BSA; 5 moles Texas Red/mole BSA), or with biotin (8–16 moles biotin/mole BSA) was injected intravenously. In addition, 6% (wt/vol) of FITC-labeled bovine insulin (FITC-I; 1 mole FITC/mole insulin, molecular mass approximately 5.8 kDa) and 1%, 2%, 5%, and 6% (wt/vol) solutions of FITC-labeled dextrans (FITC-D; 0.003–0.02 mole FITC/mole glucose) with average molecular weights of 20,000 (FITC-D20), 40,000 (FITC-D40), 70,000 (FITC-D70), and 2,000,000 (FITC-D2000) were also tested. We selected these tracers because they were representative of small nutrient molecules (i.e., FITC-I, FITC-D20, and FITC-D40) or were indicative of endothelial permeability changes (i.e., FITC-D70, FITC-BSA), or assumed to be purely intravascular (i.e., FITC-D2000). All tracers were obtained from Sigma-Aldrich Brunsschw (Amsterdam, The Netherlands).

To determine the optimal conditions for studying tumor perfusion, we first injected nude mice carrying melanoma xenografts intravenously with 5% labeled BSA; 6% FITC-I; or 1%, 2%, 5%, or 6% FITC-D70 and evaluated tracer distribution in the tumor tissue after 2 minutes (in the case of FITC-I) or 30 and 60 minutes (in the cases of labeled BSA and FITC-D70, respectively). The distribution of FITC-BSA and FITC-I was readily detectable in all xenografts (Fig. 1B), as shown previously for FITC-BSA. After perfusion with Texas red-BSA, fluorescence was hardly detectable (not shown). Histochemical visualization of biotin-BSA was unsuccessful as well, because of a high background (not shown). With 6% FITC-D70, there was reproducible visualization of tracer distribution on fresh cryosections (not shown). Therefore, 5% FITC-BSA, 6% FITC-I, and 6% FITC-D solutions were used for further study.

Immunofluorescence

Cryosections (4 μm) of xenografts containing FITC-BSA were fixed in acetone for 10 minutes. Binding of anti-CD31 monoclonal antibody (mAb) Mec 7.46 (Table 1) was detected by secondary tetramethylrhodamine isothiocyanate (TRITC)-labeled antibodies (Alexa Fluor 568; Molecular Probes, Leiden, The Netherlands). In the same section, binding of anti-laminin polyclonal antibodies (Table 1) was detected by a secondary Cy 5-labeled anti-rabbit antibody (GE Healthcare Ltd., Buckinghamshire, UK). Nuclear counterstaining was performed by incubating the sections for 1 minute in 4',6-diamidino-2-phenylindole solution (DAPI, 0.2 mg/mL; Sigma-Aldrich) and mounted in antifade medium (VectorShield; Vector Laboratories Inc., Burlingame, CA). In the case of xenograft perfusion with FITC-I or -D, tracer distribution was directly visualized in an unfixed 4-μm cryosection. Images were...
collected and digitally stored. Subsequently, sections were fixed and double stained.

Distributions of CD31 and laminin were visualized and digitally stored as well. To evaluate tracer distribution, digital images before and after double staining were exactly matched to be able to evaluate tracer in the entire tissue section. For all tracers studied, their presence in (CD31-positive) blood vessels and (laminin-positive) ECM patterns was evaluated. The amount of tracer present was compared in a semiquantitative way by comparing the amount of tracer between the different time points per tracer type. The amount of tracer at a certain time point in the two corresponding xenografted lesions was averaged and related to the highest amount of tracer per tracer type.

In Situ Hybridization

Three xenografted tumors were used for DNA in situ hybridization analysis. The 4-μm paraffin-embedded sections were deparaffinized, rehydrated, and immersed in 3% H₂O₂ in phosphate-buffered saline for 30 minutes. Subsequently, sections were incubated for 10 minutes in 1 M sodium thiocyanate at 80°C, and protein digestion was performed for 15 minutes in pepsin dissolved in distilled water (400 U/mL, pH 2.0). Sections were dehydrated and air dried before hybridization. Total DNA was isolated from human whole blood and murine kidney and liver tissue (Puregene DNA isolation kit; Gentra, Minneapolis, MN). Human DNA was labeled with biotine-16-dUTP with a nick translation mix (Roche Diagnostics GmbH, Mannheim, Germany) and murine DNA with digoxigenin-11-dUTP (Roche Diagnostics GmbH). Both probes (each probe: 3.3 ng/μL) were mixed in hybridization buffer (62.5% formamide, 10% dextran sulfate, 2× sodium citrate-Tween [pH 7.0]) and denatured at 72.5°C for 5 minutes. Sections were hybridized overnight at 42°C. Subsequently, sections were washed at 45°C for 15 minutes with a solution of 50% formamide and 2× sodium saline citrate (pH 7.0) and in phosphate-Nonidet buffer (10 mM NaH₂PO₄, 10 mM Na₂HPO₄, and 0.5% Nonidet P-40 detergent) for 10 minutes at room temperature. Biotin-labeled human DNA was detected with mouse anti-biotin polyclonal antibodies (pAbs; diluted 1:100; Dako, Glostrup, Denmark), alkaline phosphatase-conjugated avidin-biotin complex (ABC; Vectastain; Vector Laboratories), and visualized by incubation with a mixture of 1 mg/mL fast blue, 0.2 mg/mL naphthol phosphate, and 0.24 mg/mL levamisole (Sigma-Aldrich) for 10 minutes. Digoxigenin-labeled mouse DNA was detected with mouse anti-digoxigenin pAbs (dilution 1:50; Roche Diagnostics GmbH) and hors eradish peroxidase (HRP; EnVision system; Dako), and developed by a 10-minute incubation with a 0.4 mg/mL amino-9-ethyl-carbazole solution (Aldrich, Steinheim, Germany). Sections were then mounted (Imsol; Klinipath B.V., Duiven, The Netherlands).

Immunohistochemistry

Antibodies used for immunohistochemistry are listed in Table 1. The distribution of all included markers and biotin-BSA was evaluated in a standard three-step ABC method (Vectastain; Vector Laboratories) and developed in 4-amino-9-ethyl-carbazole. Before they were immunostained, strongly pigmented sections were selected and bleached by incubation with 3% (vol/vol) hydrogen peroxide and 1.0% (wt/vol) disodium hydrogen phosphate for 18 hours at room temperature. For staining with the 3G10 mAb, directed against heparitinase-digested HSPGs, sections were pretreated with 50 μL heparitinase (heparinase III, EC 4.2.2.8; Sigma-Aldrich). All sections were counterstained for 45 seconds with Harris' hematoxylin (Merck, Darmstadt, Germany) at room temperature. Finally, reticulin was detected by Lagueuse histochemistry, and the sections mounted (Imsol mounting medium; Klinipath B.V.).

RESULTS

Tracer Studies

Tracer localization was determined by comparing its distribution with laminin (ECM patterns) and CD31 (microvasculature) immunofluorescence, as described previously. In all cases, mice used per tracer type and per time point showed similar distributions of tracer, allowing reliable comparison. Tracer ability to enter the ECM was dependent on molecular size: FITC-BSA spread in approximately 45 minutes (not shown). FITC-I entered the patterns within 2 minutes (Figs. 1A–C). FITC-D70 infiltrated in the same time as FITC-BSA (Fig. 1J), whereas FITC-D20 and FITC-D40 appeared after 10 minutes (Figs. 1D–F, 1J). In particular with FITC-I and FITC-D20, a diffuse staining pattern was seen, indicating that these tracers had penetrated the tumor nests as well. The large molecular size marker FITC-D2000 extravasated perivascularly and was observed occasionally close to large vessels (Figs. 1G–I). Remarkably, at 24 hours after injection FITC-BSA was still present in the patterns, whereas FITC-D of any size had completely disappeared. When we incubated a 5% FITC-BSA solution for 1 hour on 4-μm unfixed cryosections of three xenografts, it appeared that FITC-BSA had bound to the ECM patterns directly and, to a lesser extent, to the tumor cells as well (not shown).

In Situ Hybridization of Xenografted Tumors

In situ hybridization analysis of both human and mouse total DNAs showed the localization of human tumor cells and associated murine stromal cells in melanoma xenografts. Apart from intravascular white blood cells and endothelial cells, host cells were present predominantly along the ECM patterns, whereas infiltration between tumor cells was rare (Fig. 2).

Morphologic Analysis of the ECM Patterns in Uveal Melanoma

To investigate the composition of the ECM patterns and to study effects of the presence of such patterns on the localization of infiltrating immune cells in uveal melanoma, immunohistochemical analysis was performed with a panel of antibodies that have well-documented specificity (Table 1). Results are listed in Table 2. Except for weak staining of collagen III in the microvasculature, all tested subtypes of collagen showed evident staining (Figs. 3A–D). The basement membrane-associated HSPGs agrin (Fig. 3E) and perlecan (Fig. 3F) were found in the ECM patterns and surrounding the vasculature, whereas expression of the cell membrane-associated HSPGs syndecan-1 and -3 (Fig. 3G), syndecan-2 (Fig. 3H), and glypican-1 (Fig. 3I) was weak and mainly restricted to tumor cells. Occasionally, syndecan-1, -3 and syndecan-2 (Figs. 3G, 3H) were expressed by pattern-associated cells, probably macrophages, as shown previously. Reticulin was also present in the ECM patterns (Fig. 3J). Actin-positive pericytes were mostly confined to larger vessels (Fig. 3K).

Infiltrate analysis showed that a few B-lymphocytes were present around major vessels at sites of dense infiltration (Fig. 3L). T-lymphocytes were also present in the perivascular infiltrates but were occasionally found along the patterns in uveal melanoma (Fig. 3M).

DISCUSSION

Several studies have shown that only highly aggressive melanoma cells generate ECM patterns in vitro, indicating an essential role of these patterns in tumor progression. In-
deed, as shown by these studies, the presence of blood-conducting channels in these patterns may be essential for development of this phenomenon. However, we did not observe these nonendothelial cell-lined tubes conducting blood in our xenograft model. Theoretically, there are additional possible explanations for the effects of the ECM arcs, loops, and network patterns on tumor progression in uveal melanoma: (1) The matrix deposits facilitate angiogenesis by guiding endothelial cell migration; (2) they facilitate access of plasma-derived molecules to the tumor cells; (3) they facilitate infiltration of tumor tissue by macrophages, which, in turn, enhance angiogenesis; (4) they facilitate escape of tumor cells from the primary tumor lesion; and (5) matrix deposition is merely a side-effect of tumor progression. In line with the second explanation, we recently reported that the ECM patterns may represent a fluid-conducting meshwork (Fig. 4A). Functional evaluation of this meshwork by fluorochrome-labeled insulin, BSA, and dextrans of different sizes indicated that there is a rapid entrance into the patterns of particles with a Stokes’ radius of 4.4 nm or less (based on the molecular weight of FITC-D40, using the method of Granath and Kvist) within 2 to 10 minutes, whereas penetration of larger particles (Stokes’ radius >5.8 nm [FITCD-70]) took approximately 30 to 45 minutes. In addition, some leakage of FITC-I and FITC-D20 of small molecular size from the ECM patterns between the tumor cells lining these patterns occurred (Fig. 4B). The exact nature of this transport is unclear: Fluid may be transported by an actual current or by diffusion and convection. Our data are in line with either a process of diffusion and convection, or with a stream of molecules of limited size, comparable to pressure-driven filtration (Fig. 4). Entrance of fluid derived from the blood into the patterns is determined by the permeability of the endothelium and the compactness of the ECM. Leakage of FITC-D2000 was mainly restricted to the perivascular space, indicating that entrance of particles with a Stokes’ radius of at least 27.9 nm, is mainly determined by ECM composition.

Our tracer data imply that nutrients can be transported relatively rapidly via the ECM patterns toward tumor cells located at some distance from blood vessels. Hence, in primary uveal melanoma, the role of the fluid-conducting meshwork may be essential for survival of tumor cells and may explain why necrosis is absent in areas that contain ECM patterns but have low vessel density. Although tumor vessels leak macromolecules in many experimental and human solid tumors, extravasation of these molecules is often poor. This may be
explained by the high interstitial fluid pressure in the center of a tumor.37 This phenomenon is of significance in the design and application of therapeutic agents. However, in the case of tumors containing ECM patterns, these structures may provide a gateway for the delivery of therapeutic agents into the tumor lesion. Thus, although the patterns may be involved in tumor cell nutrition and progression on the one hand, their presence may contribute to efficient therapy on the other. In this respect, a possible effect on immunotherapy is supported by a previous study showing that intravenous injection of specific monoclonal antibodies and FITC-D in melanoma-bearing mice resulted in similar distribution patterns.41

In this and a previous study,8 we have shown that the matrix-associated cells are mainly macrophages, endothelial cells, and stromal cells in both uveal and xenografted melanoma. In addition, it appeared that murine cells were hardly present inside the tumor cells nests (short arrow). Magnification, ×400.

Table 2. Immunohistochemical Analysis of the Separate Uveal Melanoma Lesions

<table>
<thead>
<tr>
<th>ECM Component</th>
<th>Arcs, Loops, and Network Patterns</th>
<th>Microvasculature</th>
<th>Tumor Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Pan-HSPG</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Heparan sulfate side chains</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Syndecan-2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Syndecan-1 and -3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Syndecan-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glypican-1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agrin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Perlecan</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Collagen XVIII</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Collagen I</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Collagen III</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Collagen IV</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Collagen V</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Reticulin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Intensity of staining was scored as negative (−, Fig. 3A), weak (±, Fig. 3I) or strong (+, Fig. 3B). 1, 2, and 3 indicate the separate lesions.
size) was said to be related to the presence of exudative retinal detachment. No satisfactory explanation was provided to explain the occurrence of this detachment. As depicted in Figure 4, leakage of exudate-like fluid from the patterns could offer an explanation for this phenomenon.

In conclusion, our data suggest that the ECM arcs, loops, and network patterns accommodate the transport of plasma-derived molecules (oxygen and nutrients) into the tumor lesion, thereby enhancing tumor growth and progression and facilitating infiltration of tumor tissue by host-derived cells. The amount of delivery of oxygen in avascular regions in the tumor may be very limited, since only low amounts of oxygen are carried by plasma. Therefore, the exudate present in the ECM arcs, loops, and network patterns probably predominantly carries small-sized molecules such as glucose and other nutrients.

Acknowledgments
The authors thank Geert Poelen and Debby Smits (Central Animal Laboratory, Nijmegen) for excellent assistance during the animal experiments and Jack van Horssen (Department of Pathology) and Ritva Pihlajaniemi (Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland) for providing antibodies for HSPG detection.
References

